COUVILLIDN

Couvillion Group, LLC
MC 20 Hydrocarbon Pump-Off \#45
Results Report

Document \#: Couv-MC20-O\&M-RPT-DOC-00068

12/29/2022

This report and any work herein was directed and authorized under the authority of the United States Coast Guard. This document is the property of Couvillion Group, LLC. And may not be used for any purposes unless authorized in writing by Couvillion Group, LLC. And which, upon demand, shall be returned to Couvillion Group. This document contains Couvillion confidential, proprietary information and shall not be copied, reproduced, used, transferred to other documents or disclosed to other for any purpose unless specifically authorized in writing by Couvillion Group, LLC.

Revision	Date	By	Check	Approve	Remarks
0	$12 / 29 / 2022$			Initial Document	

Summary:

Couvillion Group’s Rapid Response Collection System initiated its forty-fifth collection cycle on $11 / 2 / 2022$ and completed the cycle on 12/2/2022 resulting in a collection duration of 29.6 days. Using the OSV Brandon Bordelon the collected hydrocarbon fluid that was recovered from the subsea oil containment vessels was taken to the Couvillion Dock in Port Fourchon, Louisiana. Vessel to Dockside Transfer commenced on 12/3/2022, with 621.7 bbl of hydrocarbon fluids transferred to onshore frac tanks 1 and 2 according to NRC frac tank strapping.

On 12/19/2022, Couvillion Group confirmed the initial measurement of 621.7 bbl of hydrocarbon fluids in frac tanks 1 and 2 via strap measurements. After a confirmation measurement was recorded, the decanting process began. From frac tanks 1 and 2, a total of 18.5 bbl of water was decanted. This 18.5 bbl of water was sent to the third frac tank for disposal at a later time. A gross total of 590.4 bbl of fluids according to NRC strapping measurements was sent to Acadiana oil using tank trucks from frac tanks 1 and 2 . After temperature and BS\&W deductions a net total of 549.0 bbl of oil was transferred from tanks 1 and 2 in the Port Fourchon yard to the Acadiana Oil Company.

Along with the processing of frac tanks 1-2 Couvillion Group processed the $4^{\text {th }}$ frac tank which is referred to as the residual tank. The residual tank had an initial volume of 209.5 bbl of hydrocarbon fluids. A total of 135.2 bbl of water was decanted out of the frac tank and sent to the third frac tank for disposal at a later time. Following the decant process, 62.5 bbl of hydrocarbon fluids were sent to Acadiana Oil in Berwick, La. After temperature and BS\&W deductions a net total of 61.4 bbl of oil was transferred from tank 4 in the Port Fourchon Yard to the Acadiana Oil Company in Berwick, Louisiana. After processing was completed 11.8 bbl of hydrocarbon fluids were left in the $4^{\text {th }}$ frac tank for processing at a later date. Total fluid reconciliation for frac tank 4 was within 0.0%

Procedures Followed:

Couvillion Group and the associated companies participating in the collection and transportation of hydrocarbon fluids from the MC-20 site to the Acadiana Oil Company site have compiled a set of procedures that are followed throughout the process. The MC20 Response Disposal Plan with associated documentation pertaining to custody transfer and hydrocarbon fluids measurements for this report are in Appendix I. Appendix II includes the NRC waste handling documentation.

Execution:

Offshore Collection of Hydrocarbon Fluids at MC 20 Site:

The Brandon Bordelon OSV moved in place on location at MC20 on 11/29/2022 at 09:40 hrs. An asfound ROV survey was conducted prior to commencement of pump off operations. To begin pump off operations ROV's were launched and thereafter the hydraulic subsea pump and hoses were over boarded. The inlet hose to the hydraulic subsea pump was connected to the offload outlet on the subsea oil storage containers. On 11/29/2022 the ATI/BTI were closed at 12:27 and pumping commenced at 08:00 hrs on 11/30/2022. On 11/30/22 at 09:20, operations were stopped due to harsh weather conditions and ATI/BTI were reopened. After the weather dissipated, work was resumed and ATI/BTI were closed at 2:09 on 12/2/22, marking the end of the $45^{\text {th }}$ collection cycle. Pumping operations ended at $8: 25$ on $12 / 2 / 2022$. Fluids were sampled on the vessel every 20 minutes for field analysis to determine the estimated oil to water ratios until water breakthrough occurred and collection operations were then stopped. A total of $625.5 \mathbf{~ b b l}$ of hydrocarbon fluid was collected according to the tank strap measurement taken offshore. Upon pump off completion the hoses and pump were surfaced and flushed with saltwater that was sent to a filtration system for treatment and over boarding.

Vessel to Dockside Transfer

The Brandon Bordelon arrived at the Couvillion Dock in Port Fourchon, Louisiana on $12 / 3 / 2022$. On the morning of $12 / 3 / 2022$ hoses were run from the tanks on the vessel through a diaphragm pump and then run to 500 bbl frac tanks. The pump-off process was begun and continued until all MPT tanks aboard the OSV Brandon Bordelon were empty. Tankermen from Team Services verified that the MPT tanks onboard the vessel was emptied, then an NRC representative strapped the dockside frac tanks to determine the total quantity transferred which was $\mathbf{6 2 1 . 7} \mathbf{~ b b l}$. With the dockside transfer complete, the fluid was allowed to settle out water from the oil over a period of time before the transfer of the oil from the frac tanks to tank trucks.

Dockside Frac Tanks to Truck Transfers

On the morning of 12/20/2022 at 07:00 hrs the first round of frac tanks to tank truck transfers commenced. A hose was attached to the frac tank and ran through a diaphragm pump into a tank truck. Pumping commenced and the first truck received 144.9 bbls, the second truck received 150.3 bbls, and the third truck received 149.5 bbls of hydrocarbon fluids. The second day of truck transfers began on 12/21/2022 at 07:00. The final truck of pumpoff 45 received 145.7 bbls of hydrocarbon fluids. There was a total of 12.8 bbls of residual fluids which remained in frac tanks 1 and 2 and was later pumped into tank 4 . All values were recorded in the appropriate forms in the MC-20 Response Disposal Plan (see report Appendix I). Total fluid reconciliation for frac tanks $1-3$ was within 0.0%.

Truck to Facility Transfer

Upon arrival at the Acadiana Oil Company site each truck enters a loading bay. Before any fluids are transferred an Acadiana Oil Representative straps their tank for an initial measurement and then transfer of fluid begins. While the pump off is underway an Acadiana Oil Company Representative takes three fluid samples during the transfer process from the pump outlet from which hydrocarbon fluid is flowing. These samples are taken at the beginning of the transfer, mid-way through the transfer, and at the end of the transfer process to ensure a full mixture. The sample is then taken to their testing area where tests are run to determine: \% BS\&W content, temperature, and specific gravity. Temperature and specific gravity are recorded via the use of a hydrometer, while BS\&W content is determined via the use of a centrifuge with a 50/50 mixture of the sample with mineral spirits. Once all sampling is completed and recorded (see copy in Appendix I) the Acadiana Oil Company Representative again straps their tank to obtain a post transfer level. The gross fluids that are recorded is determined by subtracting the initial pump off tank strap level from the post transfer tank strap level. This gross fluid value is corrected for temperature, specific gravity and BS\&W content to determine the net oil value that is recorded. This process is repeated for each truck offload.

Summary Tally and Running Totals:

The tables below show an oil tally, a total fluid reconciliation, and a flow rate calculation. In total 621.7 bbl of hydrocarbon fluid was transferred from the Brandon Bordelon into an onshore frac tank. Tank trucks transported a gross total of 590.4 bbl to the Acadiana Oil Company, which netted out to a total of 549.0 bbl . From a total fluid reconciliation standpoint, measurements at different site locations were within 0.0% for frac tanks 1-3. The calculated flow rate during the 29.6-day collection cycle offshore was $18.5 \mathrm{bbl} /$ day or 777.0 gal/day. Monthly pump off collection rates reflects collection rates which are not inclusive of product that remains in the residual tank. This causes monthly collection rates to appear slightly lower than the historic average. As of the end of this pump off campaign 1,155,441.0 gallons of salvaged crude oil has been contained from the MC-20 site.

Oil Tally

					Truck 1				Truck 2				Truck 3				Truck 4					$\begin{gathered} \hline \text { Running } \\ \text { Total } \\ \text { Net } \\ \text { Oil } \\ \text { (bbl) } \\ \hline \end{gathered}$
Oil Tally	Date	Total Fluid Transfer by Siemens (bbl)	Total Fluid Frac Tank Strap by NRC (bbl)	\%	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluid at Acadiana by strap (bbl)	\% Diff	$\begin{gathered} \text { Net } \\ \text { Oil } \\ \text { (bbl) } \\ \hline \end{gathered}$	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluid at Acadiana by strap (bbl)	\% Diff	Net Oil (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluid at Acadiana by strap (bbl)	Diff	Net Oil (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluid at Acadiana by strap (bbl)	\% F	Net Oil (bbl)	$\begin{gathered} \hline \text { Total } \\ \text { Net } \\ \text { Oil } \\ \text { (bbl) } \\ \hline \end{gathered}$	
Pump Off \#1	$\begin{gathered} 4 / 26 / 2019 \\ 5 / 6 / 2019 \\ \hline \end{gathered}$	220.0	215.7	-2.0	113.7	110.0	3.3	108.8	97.0	87.4	9.9	78.6									187.4	187.4
Pump Off \#2	$\begin{aligned} & \hline 5 / 3 / 2019 \\ & 5 / 8 / 2019 \end{aligned}$	246.3	223.5	-10.2	101.3	102.0	-0.7	99.7	82.8	83.8	-1.2	81.9									181.6	369.0
Pump Off \#3	$\begin{aligned} & \hline 5 / 13 / 2019 \\ & 5 / 16 / 2019 \\ & \hline \end{aligned}$	335.0	331.2	-1.1	103.2	89.1	13.7	82.9	126.4	136.4	-7.9	132.1	108.5	99.5	8.3	80.7					295.7	664.8
Pump Off \#4	$\begin{aligned} & \hline 6 / 19 / 2019 \\ & 6 / 20 / 2019 \\ & 6 / 21 / 2019 \\ & \hline \end{aligned}$	901.7	905.5	0.4	$\begin{array}{r} 139.4 \\ 137.7 \\ 48.5 \\ \hline \end{array}$	$\begin{gathered} 145.8 \\ 136.2 \\ 47.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline-4.6 \\ 1.1 \\ 2.8 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 143.0 \\ 113.0 \\ 44.6 \\ \hline \end{array}$	$\begin{aligned} & 138.7 \\ & 140.7 \end{aligned}$	$\begin{aligned} & 139.4 \\ & 141.4 \end{aligned}$	$\begin{array}{\|c} \hline-0.5 \\ -0.5 \end{array}$	$\begin{array}{\|l\|} \hline 137.4 \\ 139.4 \end{array}$	140.6	141.4	-0.6	134.2	144.1	141.4	1.9	138.4	850.0	1,514.8
Pump Off \#5	$\begin{gathered} \hline 7 / 31 / 2019 \\ 8 / 1 / 2019 \\ 8 / 2 / 2019 \\ \hline \end{gathered}$	1200.2	1196.6	-0.3	$\begin{gathered} \hline 139.2 \\ 139.1 \\ 99.8 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 138.3 \\ & 145.7 \\ & 112.9 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 0.6 \\ -4.7 \\ -13.1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 133.7 \\ 135.1 \\ 111.0 \\ \hline \end{array}$	$\begin{aligned} & \hline 142.7 \\ & 140.7 \\ & 101.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 150.0 \\ & 138.4 \\ & 105.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline-5.1 \\ 1.6 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 146.5 \\ & 131.9 \\ & 104.2 \\ & \hline \end{aligned}$	146.0	142.0	2.7	81.3	138.0	142.0	-2.9	140.0	983.7	2,498.5
Pump Off \#6	$\begin{aligned} & \hline 8 / 26 / 2019 \\ & 8 / 27 / 2019 \end{aligned}$	848.0	874.6	3.0	$\begin{aligned} & 141.7 \\ & 140.5 \end{aligned}$	$\begin{aligned} & 138.4 \\ & 138.4 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 1.5 \end{aligned}$	$\begin{array}{l\|} \hline 134.6 \\ 135.5 \end{array}$	$\begin{aligned} & 140.3 \\ & 137.2 \end{aligned}$	$\begin{aligned} & 145.7 \\ & 142.0 \end{aligned}$	$\begin{array}{\|l\|} \hline-3.8 \\ -3.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140.6 \\ 139.1 \end{array}$	$\begin{gathered} 141.5 \\ 61.3 \end{gathered}$	$\begin{gathered} 145.7 \\ 65.6 \end{gathered}$	$\begin{array}{\|c\|} \hline-3.0 \\ -7.0 \end{array}$	$\begin{aligned} & \hline 143.2 \\ & 64.2 \end{aligned}$					757.2	3,255.7
Pump Off \#7	$\begin{aligned} & \hline 9 / 23 / 2019 \\ & 9 / 24 / 2019 \\ & \hline \end{aligned}$	891.9	880.4	-1.3	$\begin{aligned} & 138.0 \\ & 144.4 \end{aligned}$	$\begin{aligned} & 134.7 \\ & 142.0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 132.4 \\ 139.1 \\ \hline \end{array}$	$\begin{array}{r} 144.3 \\ 143.7 \\ \hline \end{array}$	$\begin{aligned} & 151.8 \\ & 138.4 \end{aligned}$	$\begin{array}{\|c} \hline-5.2 \\ 3.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 148.9 \\ 135.5 \end{array}$	$\begin{gathered} 142.6 \\ 55.3 \end{gathered}$	$\begin{gathered} 142.0 \\ 54.6 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 0.4 \\ 1.3 \\ \hline \end{array}$	$\begin{gathered} 139.7 \\ 53.7 \end{gathered}$					749.3	4,005.0
Pump off \#8	$\begin{aligned} & 10 / 21 / 2019 \\ & 10 / 22 / 2019 \\ & 10 / 23 / 2019 \end{aligned}$	790.9	787.4	-0.4	$\begin{aligned} & 143.9 \\ & 137.7 \end{aligned}$	$\begin{aligned} & 131.0 \\ & 141.4 \end{aligned}$	$\begin{gathered} 9.0 \\ -2.7 \end{gathered}$	$\begin{aligned} & 129.1 \\ & 139.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 154.3 \\ 130.0 \end{array}$	$\begin{aligned} & 151.9 \\ & 125.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 149.7 \\ & 123.6 \end{aligned}$	144.0	136.2	5.4	134.2						
Residual Tank	10/23/2019		205.1										125.4	125.7	-0.2	123.6					799.4	4,804.4
Pump off \#9	$\begin{aligned} & \hline 11 / 11 / 2019 \\ & 11 / 19 / 2019 \\ & 11 / 20 / 2019 \\ & \hline \end{aligned}$	772.3	757.8	-1.9	$\begin{aligned} & 142.3 \\ & 145.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 156.5 \\ & 145.6 \\ & \hline \end{aligned}$	$\begin{array}{\|c} -10.0 \\ 0.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} 153.6 \\ 143.6 \\ \hline \end{array}$	$\begin{gathered} 143.8 \\ 92.1 \\ \hline \end{gathered}$	$\begin{array}{r} 131.0 \\ 94.6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.9 \\ -2.8 \\ \hline \end{array}$	$\begin{gathered} 128.8 \\ 93.3 \\ \hline \end{gathered}$	145.3	142.0	2.3	139.9					659.1	5,463.5
Pump off \#10	$\begin{aligned} & 12 / 17 / 2019 \\ & 12 / 18 / 2019 \\ & \hline \end{aligned}$	940.7	942.8	0.2	$\begin{aligned} & 142.0 \\ & 146.4 \\ & \hline \end{aligned}$	$\begin{array}{r} 138.4 \\ 138.4 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 136.9 \\ 136.8 \\ \hline \end{array}$	$\begin{gathered} 71.4 \\ 144.3 \end{gathered}$	$\begin{array}{r} 69.2 \\ 145.7 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.1 \\ -1.0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 68.5 \\ 144.4 \end{array}$	$\begin{aligned} & 146.4 \\ & 144.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 145.7 \\ & 142.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.5 \\ 1.4 \\ \hline \end{array}$	$\begin{aligned} & 144.2 \\ & 140.8 \end{aligned}$	47.4	47.4	0.0	47.0	818.6	6,282.1
Pump off \#11	$\begin{gathered} 1 / 9 / 2020 \\ 1 / 10 / 2020 \end{gathered}$	697.7	691.0	-1.0	$\begin{array}{r} 128.7 \\ -79.4 \\ \hline \end{array}$	$\begin{gathered} 131.1 \\ 91.0 \end{gathered}$	$\begin{gathered} -1.9 \\ -14.6 \\ \hline \end{gathered}$	$\begin{gathered} 128.3 \\ 90.0 \end{gathered}$	$\begin{gathered} \hline 128.0 \\ 92.6 \\ \hline-9 . \end{gathered}$	$\begin{gathered} 131.1 \\ -91.1 \end{gathered}$	$\begin{array}{\|c\|} \hline-2.4 \\ 1.6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 129.3 \\ 90.0 \\ \hline \end{array}$	129.8	131.1	-1.0	129.6						
Residual Tank	1/8/2020				141.9	142.0	-0.1	140.0													707.2	6,989.3
Pump off \#12	$\begin{aligned} & 2 / 12 / 2020 \\ & 2 / 13 / 2020 \end{aligned}$	725.4	722.5	-0.4	$\begin{aligned} & \hline 120.8 \\ & 149.5 \end{aligned}$	$\begin{aligned} & \hline 123.8 \\ & 160.2 \end{aligned}$	$\begin{gathered} -2.5 \\ -7 \end{gathered}$	$\begin{array}{\|c\|} \hline 115.8 \\ 154 \end{array}$	$\begin{aligned} & 102.1 \\ & 114.2 \end{aligned}$	$\begin{gathered} 101.9 \\ 101.92 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.2 \\ 10.8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100.4 \\ 61.1 \end{array}$	99.0	101.9	-2.9	97.5						
Residual Tank	2/17/2020				108.2	105.6	2.4	101.3													630.1	7,619.4
Pump off \#13	$\begin{aligned} & \hline 3 / 11 / 2020 \\ & 3 / 12 / 2020 \\ & 3 / 13 / 2020 \\ & \hline \end{aligned}$	583.7	570.2	-2.4	$\begin{gathered} 114.5 \\ 93.6 \\ \hline \end{gathered}$	$\begin{gathered} 115.2 \\ 94.3 \\ \hline \end{gathered}$	$\begin{aligned} & -0.6 \\ & -0.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 112.7 \\ 91.9 \\ \hline \end{array}$	$\begin{array}{r} 138.3 \\ 120.0 \\ \hline \end{array}$	$\begin{array}{r} 136.2 \\ 120.4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.5 \\ -0.3 \\ \hline \end{array}$	$\begin{aligned} & 134.3 \\ & 117.5 \\ & \hline \end{aligned}$									456.4	8,075.8
Pumpoff \#14	$\begin{aligned} & 4 / 16 / 2020 \\ & 4 / 17 / 2020 \\ & \hline \end{aligned}$	966.7	928.8	-4.1	147.2 144.9	$\begin{aligned} & 146.5 \\ & 146.5 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ -1.1 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 144.6 \\ 144.3 \\ \hline \end{array}$	145.2 144.1	$\begin{aligned} & 141.2 \\ & 141.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.8 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 139.4 \\ 139.1 \\ \hline \end{array}$	$\begin{aligned} & 148.0 \\ & 87.4 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 146.5 \\ 88.9 \end{gathered}$	$\begin{gathered} \hline 1.0 \\ -1.7 \\ \hline \end{gathered}$	$\begin{gathered} 143.7 \\ 87.3 \\ \hline \end{gathered}$					798.4	
Residual Tank	4/14/2020				149.9	151.9	-1.3	132.3													132.3	9,006.5
Pump off \#15	$\begin{aligned} & 5 / 7 / 2020 \\ & 5 / 8 / 2020 \\ & \hline \end{aligned}$	798.4	783.1	-1.9	$\begin{aligned} & 150.3 \\ & 147.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 145.8 \\ & 149.4 \\ & \hline \end{aligned}$	$\begin{gathered} 3.0 \\ -1.5 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 143.4 \\ 147.6 \\ \hline \end{array}$	$\begin{aligned} & 148.0 \\ & 131.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 153.1 \\ & 131.2 \\ & \hline \end{aligned}$	$\begin{gathered} -3.4 \\ 0.4 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 149.4 \\ 128.6 \\ \hline \end{array}$	145.2	142.1	2.1	138.7					707.7	9,714.2
Pump off \#16	$\begin{aligned} & \hline 5 / 28 / 2020 \\ & 5 / 29 / 2020 \\ & \hline \end{aligned}$	598.8	583.3	-2.7	$\begin{aligned} & \hline 142.1 \\ & 138.0 \end{aligned}$	$\begin{aligned} & \hline 140.3 \\ & 138.5 \end{aligned}$	$\begin{gathered} \hline 1.3 \\ -0.4 \end{gathered}$	$\begin{array}{\|l\|} \hline 137.5 \\ 134.1 \end{array}$	135.1	134.8	0.2	131.7	115.0	116.6	-1.4	109.7					513.0	10,227.2
Pumpoff \#17	$\begin{gathered} \hline 7 / 8 / 2020 \\ 7 / 9 / 2020 \\ 7 / 10 / 2020 \\ \hline \end{gathered}$	970.1	956.3	1.4	$\begin{aligned} & 149.1 \\ & 150.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 149.9 \\ 149.6 \\ \hline \end{array}$	$\begin{aligned} & -0.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 146.8 \\ 146.6 \\ \hline \end{array}$	$\begin{aligned} & 148.8 \\ & 137.1 \end{aligned}$	$\begin{aligned} & 145.5 \\ & 138.0 \\ & \hline \end{aligned}$	$\begin{gathered} 2.2 \\ -0.7 \end{gathered}$	$\begin{array}{\|l\|} 142.5 \\ 135.2 \\ \hline \end{array}$	$\begin{aligned} & 149.2 \\ & 119.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 149.9 \\ & 119.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.5 \\ 0.8 \\ \hline \end{array}$	$\begin{aligned} & 146.8 \\ & 116.5 \end{aligned}$					834.4	11,061.4
Pumpoff \#18	$\begin{aligned} & 7 / 22 / 2020 \\ & 7 / 27 / 2020 \\ & 7 / 28 / 2020 \end{aligned}$	658.4	642.6	-2.5	$\begin{array}{r} 129.9 \\ -66.0 \\ \hline \end{array}$	$\begin{gathered} 129.9 \\ -66.0 \\ \hline \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 127.8 \\ & 62.8 \end{aligned}$	140.6	140.6	0.0	137.7	138.2	138.2	0.0	135.7	139.8	139.8	0.0	137.5	601.5	11,663.1
Residual Tank	7/28/2020								113	113	0.0	110.7									110.7	11,773.8
Pumpoff \#19	$\begin{aligned} & 9 / 1 / 2020 \\ & 9 / 2 / 2020 \end{aligned}$	901.6	886.4	-1.7	$\begin{aligned} & 128.2 \\ & 131.2 \end{aligned}$	$\begin{aligned} & 128.2 \\ & 131.2 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 125.6 \\ 128.3 \end{array}$	$\begin{aligned} & 135.5 \\ & 136.8 \end{aligned}$	$\begin{aligned} & 135.5 \\ & 136.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 \\ 0.0 \end{array}$	$\begin{aligned} & 132.6 \\ & 134.0 \end{aligned}$	134.8	134.8	0.0	132.0	135.9	135.9	0.0	133.0	785.5	12,559.3

Oil Tally Contd.

					Truck 1				Truck 2				Truck 3				Truck 4				$\begin{gathered} \hline \text { Total } \\ \text { Net } \\ \\ \text { Oil } \\ \text { (bbl) } \\ \hline \end{gathered}$	Running Total Net Oil (bbl)
Oil Tally	Date	Total Fluid Transfer by Siemens (bbl)	Total Fluid Frac Tank Strap by NRC (bbl)	\%	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluid at Acadiana by strap (bbl)	\% Diff	$\begin{gathered} \text { Net } \\ \\ \text { Oil } \\ \text { (bbl) } \\ \hline \end{gathered}$	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluid at Acadiana by strap (bbl)	\%iff	$\begin{array}{\|c} \hline \text { Net } \\ \\ \text { Oil } \\ \text { (bbl) } \\ \hline \end{array}$	Total Fluids to Acadiana NRC Frac Strap (bbl)	```Total Fluid at Acadiana by strap (bbl)```	$\begin{gathered} \% \\ \text { Diff } \end{gathered}$	Net Oil (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluid at Acadiana by strap (bbl)	\%iff	$\begin{gathered} \text { Net } \\ \text { Oil } \\ \text { (bbl) } \\ \hline \end{gathered}$		
Pumpoff \#20	$\begin{aligned} & 9 / 29 / 2020 \\ & 9 / 30 / 2020 \end{aligned}$	464.2	450.9	-2.9	$\begin{gathered} \hline 144.0 \\ 85.7 \end{gathered}$	140.0 83.0	$\begin{aligned} & 2.8 \\ & 3.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 137.9 \\ 81.6 \\ \hline \end{array}$	143.5	140.0	2.4	137.9									357.4	12,916.7
Residual Tank	10/1/2020				136.5	131.0	4.0	128.6													128.6	13,045.3
Pumpoff \#21	$\begin{aligned} & 10 / 15 / 2020 \\ & 10 / 16 / 2020 \end{aligned}$	620.9	610.1	-1.8	$\begin{aligned} & \hline 139.0 \\ & 147.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 139.0 \\ & 144.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline 130.8 \\ & 142.5 \end{aligned}$	$\begin{aligned} & \hline 145.3 \\ & 136.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 145.0 \\ & 135.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 0.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 142.1 \\ 132.9 \end{array}$									548.3	13,593.6
Pumpoff \#22	$\begin{aligned} & 11 / 16 / 2020 \\ & 11 / 17 / 2020 \\ & \hline \end{aligned}$	685.6	673.2	-1.8	$\begin{aligned} & 146.5 \\ & 133.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 143.0 \\ & 130.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 139.7 \\ & 124.3 \\ & \hline \end{aligned}$	143.4	142.0	1.0	140.1	146.4	140.0	4.4	128.3					532.4	14,126.0
Pumpoff \#23	$\begin{aligned} & 12 / 30 / 2020 \\ & 12 / 31 / 2020 \\ & \hline \end{aligned}$	781.7	784.3	0.3	$\begin{aligned} & 146.1 \\ & 145.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 140.0 \\ & 141.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.2 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 137.3 \\ 138.4 \\ \hline \end{array}$	$\begin{aligned} & 146.8 \\ & 113.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 140.0 \\ & 111.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 4.6 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 138.6 \\ 107.2 \\ \hline \end{array}$	145.2	137.0	5.6	133.9					655.4	14,781.4
Pumpoff \# 24	$\begin{aligned} & 1 / 27 / 2021 \\ & 1 / 28 / 2021 \\ & 2 / 19 / 2021 \end{aligned}$	676.5	663.9	-1.9	$\begin{aligned} & 123.9 \\ & 141.0 \\ & 146.0 \end{aligned}$	135.0	7.5	133.7	$\begin{aligned} & 140.2 \\ & 150.7 \end{aligned}$	$\begin{aligned} & 140.0 \\ & 141.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 137.7 \\ & 139.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 146.8 \\ & 115.3 \end{aligned}$	112.0	2.9	107.05]					517.5	15,298.9
Residual Tank	2/20/2021				100.9	101.5	-0.6	96.0													96.0	15,394.9
Pumpoff \#25	$\begin{aligned} & \hline 3 / 8 / 2021 \\ & 3 / 9 / 2021 \\ & \hline \end{aligned}$	759.7	738.1	-2.9	$\begin{aligned} & 144.6 \\ & 144.1 \\ & \hline \end{aligned}$	$\begin{gathered} 143.0 \\ 140 \\ \hline \end{gathered}$	$\begin{aligned} & 1.1 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 140.9 \\ & 133.9 \end{aligned}$	$\begin{gathered} 146.5 \\ 77.3 \\ \hline \end{gathered}$	$\begin{aligned} & 143.0 \\ & 75.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 3.0 \end{aligned}$	$\begin{gathered} 141.7 \\ 70.8 \\ \hline \end{gathered}$	146.0	140.0	4.1	137.4					624.7	16,019.5
Pumpoff \#26-27	$\begin{array}{r} \hline 4 / 21 / 2021 \\ 4 / 22 / 2021 \\ 4 / 23 / 2021 \\ \hline \end{array}$	$\begin{aligned} & 498.2 \\ & 553.0 \end{aligned}$	$\begin{aligned} & 472.6 \\ & 544.3 \end{aligned}$	$\begin{aligned} & \hline-5.4 \\ & -1.6 \end{aligned}$	$\begin{aligned} & 143.7 \\ & 123.5 \end{aligned}$	$\begin{aligned} & 136.2 \\ & 129.7 \end{aligned}$	$\begin{gathered} 5.2 \\ -5.0 \end{gathered}$	$\begin{aligned} & \hline 134.8 \\ & 128.0 \end{aligned}$	$\begin{aligned} & 142.6 \\ & 146.4 \\ & 111.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 138.6 \\ & 146.7 \\ & 109.1 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2.8 \\ -0.2 \\ 2.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 137.2 \\ & 146.6 \\ & 106.3 \\ & \hline \end{aligned}$	144.1	142.0	1.5	139.9					792.8	16,812.3
Residual Tank	4/23/2021				132.5	131	1.1	127.0													127.0	16,939.3
Pumpoff \#28	$\begin{aligned} & 5 / 26 / 2021 \\ & 5 / 27 / 2021 \\ & 5 / 28 / 2021 \\ & \hline \end{aligned}$	716.0	706.1	-1.4	$\begin{gathered} 144.5 \\ 81.1 \end{gathered}$	$\begin{array}{r} 140.6 \\ 78.0 \\ \hline \end{array}$	$\begin{aligned} & 2.7 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{gathered} 136.3 \\ 76.1 \\ \hline \end{gathered}$	$\begin{gathered} 141.1 \\ 88.7 \\ \hline \end{gathered}$	$\begin{aligned} & 139.0 \\ & 82.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 1.5 \\ 7.6 \\ \hline \end{array}$	$\begin{gathered} 136.6 \\ 78.3 \\ \hline \end{gathered}$	143.3	140.4	2	137.9					565.2	17,504.5
Pumpoff \#29	$\begin{aligned} & 7 / 14 / 2021 \\ & 7 / 15 / 2021 \\ & 7 / 16 / 2021 \\ & \hline \end{aligned}$	648.0	631.7	-2.6	114.7	115.3	-0.5	113.8	150.8	149.0	1.2	145.9	119.8	120.2	-0.3	118.5	155.3	151.7	2.3	149.2	527.4	18,031.9
Pumpoff \#30	$\begin{aligned} & 8 / 5 / 2021 \\ & 8 / 6 / 2021 \end{aligned}$	763.0	750.2	-1.7	$\begin{aligned} & \hline 115.3 \\ & 118.5 \end{aligned}$	$\begin{aligned} & 115.0 \\ & 118.0 \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.4 \end{aligned}$	$\begin{array}{\|l\|} \hline 112.9 \\ 115.5 \end{array}$	$\begin{aligned} & \hline 112.6 \\ & 118.4 \end{aligned}$	$\begin{aligned} & \hline 111.0 \\ & 117.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.4 \\ 1.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 109.0 \\ 114.2 \end{array}$	$\begin{aligned} & \hline 106.8 \\ & 124.3 \end{aligned}$	$\begin{aligned} & \hline 105.0 \\ & 123.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.7 \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & \hline 103.2 \\ & 118.6 \end{aligned}$					673.4	18705.3
Pumpoff \#31	$\begin{aligned} & 9 / 23 / 2021 \\ & 9 / 24 / 2021 \end{aligned}$	616.2	598.4	-3.0	$\begin{aligned} & 145.6 \\ & 126.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 141.6 \\ & 123.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 140.0 \\ 119.8 \\ \hline \end{array}$	$\begin{aligned} & 142.9 \\ & 138.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 142.9 \\ & 134.3 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.0 \\ 3.2 \\ \hline \end{array}$	$\begin{aligned} & \hline 141.8 \\ & 129.2 \\ & \hline \end{aligned}$									530.8	19236.1
Pumpoff \#32	$\begin{aligned} & \hline 11 / 3 / 2021 \\ & 11 / 4 / 2021 \\ & 11 / 5 / 2021 \\ & 11 / 9 / 2021 \\ & \hline \end{aligned}$	952.4	937.1	-1.6	$\begin{aligned} & 147.8 \\ & 152.5 \\ & 150.2 \\ & 118.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 147.0 \\ & 149.0 \\ & 147.0 \\ & 117.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 2.3 \\ & 2.1 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 145.5 \\ & 147.0 \\ & 144.8 \\ & 115.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 148.7 \\ & 154.6 \end{aligned}$	$\begin{aligned} & 148.0 \\ & 145.0 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 6.2 \end{aligned}$	$\begin{array}{l\|} \hline 146.0 \\ 142.2 \end{array}$									840.9	20077.0
Pumpoff \#33	$\begin{gathered} \hline 11 / 30 / 2021 \\ 12 / 1 / 2021 \\ \hline \end{gathered}$	787.9	786.2	-0.2	$\begin{aligned} & \hline 142.9 \\ & 141.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 140.5 \\ 138.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.7 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 139.5 \\ 137.8 \\ \hline \end{array}$	$\begin{aligned} & \hline 144.0 \\ & 130.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 140.9 \\ & 128.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.2 \\ 2.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 139.9 \\ 127.2 \\ \hline \end{array}$	149.6	145.3	2.9	143.6					688.0	20765.0
Pumpoff \#34	$\begin{aligned} & \hline 1 / 6 / 2022 \\ & 1 / 7 / 2022 \end{aligned}$	686.6	673.8	-1.9	$\begin{gathered} \hline 149.6 \\ 86.4 \\ \hline \end{gathered}$	$\begin{gathered} 140.5 \\ 87.0 \end{gathered}$	$\begin{gathered} \hline 6.1 \\ -0.7 \end{gathered}$	$\begin{gathered} \hline 138.9 \\ 86.3 \\ \hline \end{gathered}$	144.0	148.3	-3.0	146.1	152.3	148.5		147.2					518.5	21283.5
Pumpoff \#35 Residual Tank	2/16/2022	564.2	551.9	-2.2	$\begin{gathered} 144.1 \\ 125.5 \\ 94.0 \\ \hline \end{gathered}$	$\begin{gathered} 144.0 \\ 120.0 \\ 88.0 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \\ & 4.4 \\ & 6.4 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 142.7 \\ 118.3 \\ 70.1 \\ \hline \end{array}$	$\begin{aligned} & 140.2 \\ & 121.8 \end{aligned}$	$\begin{aligned} & \hline 136.2 \\ & 114.6 \end{aligned}$	$\begin{array}{\|l} \hline 2.9 \\ 5.9 \end{array}$	$\begin{array}{\|l\|} \hline 140.2 \\ 112.3 \end{array}$									$\begin{gathered} 513.5 \\ 70.1 \\ \hline \end{gathered}$	21867.1
Pumpoff \#36	$\begin{aligned} & \hline 3 / 23 / 2022 \\ & 3 / 24 / 2022 \\ & \hline \end{aligned}$	690.7	678.5	-1.8	$\begin{aligned} & 152.5 \\ & 148.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 148.3 \\ 142.1 \\ \hline \end{array}$	$\begin{aligned} & 2.8 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 147.4 \\ 141.1 \\ \hline \end{array}$	$\begin{aligned} & 152.7 \\ & 157.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 147.9 \\ & 150.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.1 \\ 4.8 \\ \hline \end{array}$	$\begin{aligned} & \hline 145.8 \\ & 144.6 \\ & \hline \end{aligned}$									578.9	22446.0
Pumpoff \#37	$\begin{aligned} & 5 / 4 / 2022 \\ & 5 / 6 / 2022 \end{aligned}$	882.7	868.2	-1.7	$\begin{aligned} & \hline 146.0 \\ & 145.7 \end{aligned}$	$\begin{aligned} & \hline 144.0 \\ & 142.4 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 141.4 \\ & 141.3 \end{aligned}$	$\begin{aligned} & \hline 151.5 \\ & 127.3 \end{aligned}$	$\begin{aligned} & \hline 146.6 \\ & 125.0 \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline 143.9 \\ & 123.7 \end{aligned}$	$\begin{gathered} 156.2 \\ 70.4 \end{gathered}$	$\begin{gathered} 153.0 \\ 68.3 \end{gathered}$	$\begin{array}{\|l\|} \hline 2.0 \\ 3.0 \\ \hline \end{array}$	$\begin{gathered} \hline 150.8 \\ 67.4 \end{gathered}$					768.5	23214.5
Pumpoff \#38	$\begin{aligned} & 6 / 1 / 2022 \\ & 6 / 2 / 2022 \end{aligned}$	685.4	674.0	-1.7	$\begin{aligned} & \hline 145.2 \\ & 140.2 \end{aligned}$	$\begin{aligned} & 142.0 \\ & 135.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 139.9 \\ 128.1 \\ \hline \end{array}$	$\begin{aligned} & \hline 150.3 \\ & 136.6 \end{aligned}$	$\begin{aligned} & \hline 146.7 \\ & 132.6 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.9 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 144.6 \\ 130.4 \\ \hline \end{array}$									543.0	23757.5
Pumpoff \#39	$\begin{aligned} & 6 / 29 / 2022 \\ & 6 / 30 / 2022 \\ & \hline \end{aligned}$	545.5	539.3	-1.3	$\begin{aligned} & \hline 145.7 \\ & 142.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 136.9 \\ & 139.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 134.1 \\ 136.7 \\ \hline \end{array}$	$\begin{gathered} \hline 143.6 \\ 49.8 \\ \hline \end{gathered}$	$\begin{gathered} 140.7 \\ 49.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 137.7 \\ 46.6 \\ \hline \end{array}$									455.1	24212.6
Pumpoff \#40	$\begin{aligned} & \hline 7 / 28 / 2022 \\ & 7 / 29 / 2022 \end{aligned}$	707.2	702.1	-0.7	$\begin{aligned} & \hline 139.1 \\ & 141.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 137.0 \\ & 138.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 134.4 \\ & 135.2 \end{aligned}$	$\begin{gathered} \hline 144.9 \\ 86.8 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 140.7 \\ & 83.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 137.6 \\ 81.8 \\ \hline \end{array}$	135.9	133.2	2.0	130.2					619.2	24831.8
Pumpoff \#41	$\begin{aligned} & \hline 8 / 26 / 2022 \\ & 8 / 29 / 2022 \\ & \hline \end{aligned}$	461.4	459.8	-0.3	$\begin{aligned} & \hline 149.6 \\ & 149.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 146.2 \\ & 146.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.3 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 143.8 \\ & 144.0 \\ & \hline \end{aligned}$	106.3	102.1	4.0	99.8									387.6	25219.4
Pumpoff \#42	$\begin{aligned} & 9 / 20 / 2022 \\ & 9 / 21 / 2022 \end{aligned}$	565.9	563.9	-0.4	$\begin{array}{r} 151.5 \\ 151.9 \\ \hline \end{array}$	$\begin{aligned} & 147.6 \\ & 149.9 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 144.6 \\ 146.9 \\ \hline \end{array}$	153.7	153.0	0.5	150.0	75.0	75.0	0.0	73.4					514.9	25734.3
Residual Tank	9/21/2022				74.2	70.5	5.0	69.0	86.5	86.0	0.6	68.0									137.0	25871.3
Pumpoff \#43	$\begin{array}{\|l\|} \hline 10 / 26 / 2022 \\ 10 / 27 / 2022 \\ \hline \end{array}$	577.3	581.8	0.8	$\begin{aligned} & 143.8 \\ & 146.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 139.5 \\ & 141.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 137.5 \\ & 139.4 \\ & \hline \end{aligned}$	$\begin{gathered} 145.6 \\ 83.9 \\ \hline \end{gathered}$	$\begin{gathered} 143.4 \\ 81.3 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.1 \\ & \hline \end{aligned}$	$\begin{gathered} 141.5 \\ 80.2 \\ \hline \end{gathered}$									498.6	26369.9
Pumpoff \#44	$\begin{aligned} & 11 / 22 / 2022 \\ & 11 / 23 / 2022 \\ & \hline \end{aligned}$	583.2	580.2	-0.5	$\begin{aligned} & 138.3 \\ & 148.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 127.6 \\ & 140.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.7 \\ & 5.1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 126.5 \\ 138.7 \\ \hline \end{array}$	$\begin{aligned} & 132.4 \\ & 133.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 137.7 \\ & 129.6 \\ & \hline \end{aligned}$	$\begin{gathered} -4.0 \\ 2.7 \\ \hline \end{gathered}$	$\begin{aligned} & 136.5 \\ & 128.5 \\ & \hline \end{aligned}$									530.2	26900.1
Pumpoff \#45	$\begin{aligned} & 12 / 20 / 2022 \\ & 12 / 21 / 2022 \end{aligned}$	625.5	621.7	-0.6	$\begin{array}{r} 144.9 \\ -145.7 \end{array}$	$\begin{aligned} & 140.0 \\ & 140.0 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 137.0 \\ & 137.0 \\ & \hline \end{aligned}$	150.3	140.0	6.9	137.0	149.5	141.0	5.7	138.0					549.0	27449.1
Residual Tank	12/21/2022				62.5	62.7	-0.3	61.4													61.4	27510.5

Total Fluid Reconciliation

				Truck 1	Truck 2	Truck 3	Truck 4			
	Date	Total Fluid Frac Tank Strap at Port Fourchon by NRC (bbl)	Water Decanted From Frac Tank Using Strap Measurement (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Residual left in Frac Tanks (bbl)	Total of Fluid From Trucks, Residual \& Decant (bbl)	$\begin{gathered} \text { \% } \\ \text { Diff } \end{gathered}$
Pump Off \#1	$\begin{array}{r} 4 / 26 / 2019 \\ 5 / 6 / 2019 \\ \hline \end{array}$	215.7	0.0	113.7	97.0	0.0	0.0	5.2	215.9	0.1
Pump Off \#2	$\begin{aligned} & \hline 5 / 3 / 2019 \\ & 5 / 8 / 2019 \\ & \hline \end{aligned}$	223.5	15.6	101.3	82.8	0.0	0.0	17.6	217.3	-2.8
Pump Off \#3	$\begin{aligned} & \hline 5 / 13 / 2019 \\ & 5 / 16 / 2019 \end{aligned}$	331.2	0.0	103.2	126.4	108.5	0.0	16.2	354.3	-1.6
Pump Off \#4	$6 / 19 / 2019$ $6 / 20 / 2019$ $6 / 21 / 2019$ PO4: Total	905.5	32.5	$\begin{gathered} \hline 139.4 \\ 137.7 \\ 48.5 \end{gathered}$	$\begin{gathered} 138.7 \\ 140.7 \\ 0.0 \end{gathered}$	$\begin{gathered} \hline 0.0 \\ 140.6 \\ 0.0 \end{gathered}$	$\begin{gathered} \hline 0.0 \\ 144.1 \\ 0.0 \end{gathered}$	0.6	$\begin{gathered} \hline 310.6 \\ 563.1 \\ 49.1 \\ 922.8 \\ \hline \end{gathered}$	-1.8
Pump Off \#5	$\begin{gathered} \hline 7 / 31 / 2019 \\ 8 / 1 / 2019 \\ 8 / 2 / 2019 \\ \text { PO5: Total } \\ \hline \end{gathered}$	1196.6	96.3	$\begin{gathered} \hline 139.2 \\ 139.1 \\ 99.8 \end{gathered}$	$\begin{aligned} & \hline 142.7 \\ & 140.7 \\ & 101.0 \end{aligned}$	146.0	138.0	45.2	$\begin{gathered} \hline 281.9 \\ 563.8 \\ 246.0 \\ 1188.0 \\ \hline \end{gathered}$	-0.7
Pump Off \#6	$\begin{aligned} & \hline 8 / 26 / 2019 \\ & 8 / 27 / 2019 \\ & \text { PO6: Total } \\ & \hline \end{aligned}$	874.6	56.8	$\begin{aligned} & 141.7 \\ & 140.5 \end{aligned}$	$\begin{aligned} & 140.3 \\ & 137.2 \end{aligned}$	$\begin{gathered} 141.5 \\ 61.3 \end{gathered}$		57.9	$\begin{aligned} & 480.3 \\ & 396.9 \\ & 877.2 \end{aligned}$	0.3
Pump Off \#7	$\begin{aligned} & \hline 9 / 23 / 2019 \\ & \text { 9/24/2019 } \\ & \text { P07: Total } \\ & \hline \end{aligned}$	880.4	41.3	$\begin{aligned} & 138.0 \\ & 144.4 \end{aligned}$	$\begin{aligned} & 144.3 \\ & 143.7 \end{aligned}$	$\begin{gathered} 142.6 \\ 55.3 \end{gathered}$		$\begin{gathered} 55.3 \\ * \end{gathered}$	$\begin{aligned} & \hline 466.2 \\ & 398.7 \\ & 864.9 \\ & \hline \end{aligned}$	-1.8
Pump Off \#8	$\begin{aligned} & 10 / 21 / 2019 \\ & 10 / 22 / 2019 \\ & 10 / 23 / 2019 \end{aligned}$	787.4	27.2	$\begin{aligned} & 143.9 \\ & 137.7 \end{aligned}$	$\begin{aligned} & 154.3 \\ & 130.0 \end{aligned}$	144.0			$\begin{gathered} 27.2 \\ 442.2 \\ 267.7 \end{gathered}$	
Residual Tank	$\begin{gathered} \text { 10/23/2019 } \\ \text { PO8: Total } \end{gathered}$	205.1	53.5			125.4		66.4	$\begin{aligned} & 245.3 \\ & 982.4 \end{aligned}$	-1.0
Pump Off \#9	$\begin{gathered} \hline 11 / 19 / 2019 \\ 11 / 20 / 2019 \\ \text { PO9: Total } \\ \hline \end{gathered}$	757.8	32.0	$\begin{aligned} & 142.3 \\ & 145.6 \end{aligned}$	$\begin{gathered} 143.8 \\ 92.1 \end{gathered}$	145.3		55.6	$\begin{aligned} & 463.4 \\ & 293.3 \\ & 756.7 \\ & \hline \end{aligned}$	-0.1
Pump Off \#10	$\begin{aligned} & \text { 12/17/2019 } \\ & \text { 12/18/2019 } \\ & \text { PO10: Total } \\ & \hline \end{aligned}$	942.8	33.4	$\begin{aligned} & 142.0 \\ & 146.4 \end{aligned}$	$\begin{gathered} \hline 71.4 \\ 144.3 \end{gathered}$	$\begin{aligned} & 146.4 \\ & 144.0 \end{aligned}$	47.4	73.9	$\begin{aligned} & 393.2 \\ & 556.0 \\ & 949.2 \\ & \hline \end{aligned}$	0.7
Pump Off \#11	$\begin{gathered} 1 / 9 / 2020 \\ 1 / 10 / 2020 \end{gathered}$	691.0	39.2	$\begin{gathered} 128.7 \\ 79.4 \end{gathered}$	$\begin{gathered} 128.0 \\ 92.6 \end{gathered}$	129.8		72.7	$\begin{aligned} & 498.4 \\ & 172.0 \end{aligned}$	
Residual Tank	$\begin{aligned} & 1 / 8 / 2020 \\ & \text { PO11: Total } \end{aligned}$	307.0	81.5	141.9				121.7	$\begin{gathered} 345.1 \\ 1015.5 \\ \hline \end{gathered}$	1.8
Pumpoff \#12	$\begin{aligned} & \hline \text { 2/11/2020 } \\ & 2 / 12 / 2020 \\ & \text { 2/13/2020 } \\ & \text { PO12: Total } \end{aligned}$	722.5	$\begin{gathered} \hline 49.1 \\ 2.7 \\ 3.9 \end{gathered}$	$\begin{aligned} & 120.8 \\ & 149.5 \end{aligned}$	$\begin{aligned} & 102.1 \\ & 114.2 \end{aligned}$	99.0		87.5 $*$	$\begin{gathered} \hline 49.1 \\ 324.6 \\ 355.1 \\ 728.8 \end{gathered}$	0.9
Residual tank	$\begin{aligned} & 2 / 17 / 2020 \\ & 2 / 18 / 2020 \\ & \text { Resid Total } \end{aligned}$	265.8	$\begin{aligned} & 93.6 \\ & 23.5 \end{aligned}$	108.2				121.7	$\begin{gathered} 201.8 \\ 145.2 \\ 347 \\ \hline \end{gathered}$	-1.8
Pumpoff \#13	$\begin{aligned} & \hline 3 / 11 / 2020 \\ & 3 / 12 / 2020 \\ & 3 / 13 / 2020 \\ & \text { PO13: Total } \end{aligned}$	570.2	$\begin{gathered} 39.6 \\ 2.8 \end{gathered}$	$\begin{gathered} 114.5 \\ 93.6 \end{gathered}$	$\begin{aligned} & 138.3 \\ & 120.0 \end{aligned}$			63.7	$\begin{gathered} \hline 39.6 \\ 255.6 \\ 277.3 \\ 572.5 \end{gathered}$	0.4
Pumpoff \#14	$\begin{aligned} & \hline \text { 4/15/2020 } \\ & \text { 4/16/2020 } \\ & \text { 4/17/2020 } \\ & \text { PO14:Total } \end{aligned}$	928.8	55.1	$\begin{aligned} & 147.2 \\ & 144.9 \end{aligned}$	$\begin{aligned} & 145.2 \\ & 144.1 \end{aligned}$	$\begin{aligned} & 148 \\ & 87.4 \end{aligned}$		65.4	$\begin{gathered} \hline 55.1 \\ 440.4 \\ 441.8 \\ 937.3 \\ \hline \end{gathered}$	0.9
Residual tank	$\begin{aligned} & 4 / 13 / 2020 \\ & 4 / 14 / 2020 \end{aligned}$	244.1	67.6	149.9				26.6	$\begin{gathered} -67.6 \\ 176.5 \\ 244.1 \end{gathered}$	0.0
Pumpoff \#15	$5 / 6 / 2020$ $5 / 7 / 2020$ $5 / 8 / 2020$ PO15: Total	783.1	$\begin{gathered} 18.3 \\ 1.2 \end{gathered}$	$\begin{aligned} & 150.3 \\ & 147.2 \end{aligned}$	$\begin{aligned} & 148.0 \\ & 131.7 \end{aligned}$	145.2		40.0	$\begin{gathered} \hline 18.3 \\ 444.7 \\ 318.9 \\ 781.9 \end{gathered}$	-0.2
Pumpoff \#16	$\begin{gathered} \text { 5/27/2020 } \\ \text { 5/28/2020 } \\ \text { 5/29/2020 } \\ \text { PO16: Total } \end{gathered}$	583.3	25.3	$\begin{aligned} & 142.1 \\ & 138.0 \end{aligned}$	135.1	115.0		27.8	$\begin{gathered} 25.3 \\ 142.1 \\ 415.9 \\ 583.3 \\ \hline \end{gathered}$	0.0
Residual tank	5/27/2020		67.2					153.6		
Pumpoff \#17	7/8/2020 $7 / 9 / 2020$ $7 / 10 / 2020$ PO17: Total	956.3	$\begin{gathered} \hline 23.6 \\ 2.4 \end{gathered}$	$\begin{aligned} & 149.1 \\ & 150.7 \end{aligned}$	$\begin{aligned} & 148.8 \\ & 137.1 \end{aligned}$	$\begin{aligned} & 149.2 \\ & 119.9 \end{aligned}$		63.3	$\begin{gathered} 23.6 \\ 449.5 \\ 471 \\ 944.1 \end{gathered}$	-1.3
Pumpoff \#18	$\begin{aligned} & \hline 7 / 22 / 2020 \\ & 7 / 27 / 2020 \\ & 7 / 28 / 2020 \end{aligned}$	642.6	$\begin{aligned} & 14.3 \\ & 13.6 \end{aligned}$	$\begin{gathered} 129.9 \\ 66.0 \end{gathered}$	140.6	138.2	139.8	0.0	642.4	0.0
Residual Tank	$\begin{aligned} & 7 / 22 / 2020 \\ & 7 / 28 / 2020 \end{aligned}$	299.6	$\begin{aligned} & 67.2 \\ & 31.3 \end{aligned}$	113.0				84.5	296.0	-1.2
Pumpoff \#19	$\begin{aligned} & 9 / 1 / 2020 \\ & 9 / 2 / 2020 \end{aligned}$	886.4	7.8	$\begin{aligned} & 128.2 \\ & 131.2 \end{aligned}$	$\begin{aligned} & 135.5 \\ & 135.9 \end{aligned}$	135.9	134.8	76.2	885.5	-0.1
Residual Tank	8/31/2020	292.6	102.9					189.7	189.7	

Total Fluid Reconciliation Contd.

				Truck 1	Truck 2	Truck 3	Truck 4			
	Date	Total Fluid Frac Tank Strap at Port Fourchon by NRC (bbl)	Water Decanted From Frac Tank Using Strap Measurement (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Total Fluids to Acadiana NRC Frac Strap (bbl)	Residual left in Frac Tanks (bbl)	Total of Fluid From Trucks, Residual \& Decant (bbl)	$\begin{gathered} \% \\ \text { Diff } \end{gathered}$
Pumpoff \#20	$\begin{aligned} & 9 / 29 / 2020 \\ & 9 / 30 / 2020 \end{aligned}$	4509	52.9	$\begin{aligned} & 144.0 \\ & 85.7 \end{aligned}$	143.5			24.8	4509	0.0
Residual Tank	$\begin{aligned} & 9 / 30 / 2020 \\ & 10 / 1 / 2020 \\ & \hline \end{aligned}$	2732	$\begin{gathered} 116.1 \\ 2.7 \\ \hline \end{gathered}$	136.5				17.9	2732	0.0
Pumpoff \#21	$\begin{aligned} & \hline 10 / 15 / 2020 \\ & 10 / 16 / 2020 \\ & \hline \end{aligned}$	610.1	14.0	$\begin{aligned} & \hline 139.0 \\ & 147.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 145.3 \\ & 136.0 \\ & \hline \end{aligned}$			28.6	610.1	0.0
Residual Tank	$\begin{aligned} & 10 / 14 / 2020 \\ & 10 / 15 / 2020 \end{aligned}$	293.4	$\begin{aligned} & \hline 111.8 \\ & 132.1 \\ & \hline \end{aligned}$					49.5	293.4	0.0
Pumpoff \#22	$\begin{aligned} & 11 / 16 / 2020 \\ & 11 / 17 / 2020 \\ & \hline \end{aligned}$	6732	$\begin{gathered} \hline 68.7 \\ 2.7 \\ \hline \end{gathered}$	$\begin{aligned} & 146.5 \\ & 133.2 \\ & \hline \end{aligned}$	143.4	146.4		32.3	6732	0.0
Pumpoff \#23	$\begin{aligned} & 12 / 30 / 2020 \\ & 12 / 31 / 2020 \\ & \hline \end{aligned}$	7843	30.3	$\begin{aligned} & \hline 146.1 \\ & 145.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 146.8 \\ & 113.9 \\ & \hline \end{aligned}$	1452		56.7	7843	0.0
Pumpoff \#24	$\begin{aligned} & 1 / 27 / 2021 \\ & 1 / 28 / 2021 \\ & 2 / 19 / 2021 \end{aligned}$	6639	$\begin{aligned} & 23.3 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 140.2 \\ & 146.0 \end{aligned}$	150.7	1153		68.5	655	-12
Residual Tank	2/20/2021	1648	31.1	100.9				32.8	1648	0.0
Pumpoff \# 25	$\begin{aligned} & 3 / 3 / 2021 \\ & 3 / 8 / 2021 \\ & 3 / 9 / 2021 \end{aligned}$	738.1	$\begin{gathered} \hline 26.1 \\ 5.7 \end{gathered}$	$\begin{aligned} & 144.6 \\ & 144.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 146.5 \\ & 773 \end{aligned}$	1460		47.8	738.1	0.0
Pumpoff \# 26-27	$\begin{gathered} \hline 4 / 1 / 2021 \\ 4 / 20 / 2021 \\ 4 / 21 / 2021 \\ 4 / 22 / 2021 \\ 4 / 23 / 2021 \end{gathered}$	1016.9	$\begin{gathered} 73.8 \\ 60.2 \\ 6.4 \end{gathered}$	$\begin{aligned} & 143.7 \\ & 123.5 \\ & 111.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 142.6 \\ & 146.4 \end{aligned}$	144.1		62.2	1014.3	-03
Residual Tank	$\begin{aligned} & 4 / 21 / 2021 \\ & 4 / 22 / 2021 \\ & 4 / 23 / 2021 \\ & \hline \end{aligned}$	2169	$\begin{gathered} 9.4 \\ 18.2 \\ 32.6 \\ \hline \end{gathered}$	132.5				23.8	2165	-02
Pumpoff \#28	$\begin{aligned} & \hline 5 / 26 / 2021 \\ & 5 / 27 / 2021 \\ & 5 / 28 / 2021 \end{aligned}$	706.1	72.5	$\begin{gathered} 144.5 \\ 81.1 \end{gathered}$	$\begin{gathered} 141.4 \\ 88.7 \\ \hline \end{gathered}$	1433		34.6	706.1	0.0
Pumpoff \#29	$\begin{aligned} & 7 / 14 / 2021 \\ & 7 / 15 / 2021 \end{aligned}$	631.7	81.4	114.7	150.8	1198	155.3	9.7	631.7	0.0
Residual Tank	$\begin{aligned} & 7 / 16 / 2021 \\ & 7 / 21 / 2021 \end{aligned}$	3712	$\begin{aligned} & 219.1 \\ & 152.1 \end{aligned}$						3712	0.0
Pumpoff \#30	$8 / 4 / 2021$ $8 / 5 / 2021$ $8 / 6 / 2021$	7502	20.4	$\begin{aligned} & 115.3 \\ & 118.5 \end{aligned}$	$\begin{aligned} & 112.6 \\ & 118.4 \\ & \hline \end{aligned}$	$\begin{array}{r} 1068 \\ 1243 \\ \hline \end{array}$		33.9	7502	0.0
Pumpoff \#31	$\begin{aligned} & 9 / 22 / 2021 \\ & 9 / 23 / 2021 \\ & 9 / 24 / 2021 \end{aligned}$	598.4	$\begin{aligned} & \hline 16.7 \\ & 28.2 \end{aligned}$	$\begin{aligned} & 145.6 \\ & 126.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 142.9 \\ & 138.7 \end{aligned}$				598.4	0.0
Pumpoff \#32	$\begin{aligned} & 11 / 3 / 2021 \\ & 11 / 4 / 2021 \\ & 11 / 5 / 2021 \\ & 11 / 9 / 2021 \end{aligned}$	937.1	31.7	$\begin{aligned} & 147.8 \\ & 152.5 \\ & 150.2 \\ & 118.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 148.7 \\ & 154.6 \end{aligned}$			32.0	9363	-0.1
Pumpoff \#33	$\begin{gathered} \hline 11 / 29 / 2021 \\ 11 / 30 / 2021 \\ 12 / 1 / 2021 \\ \hline \end{gathered}$	7862	56.0	$\begin{aligned} & 142.9 \\ & 141.5 \end{aligned}$	$\begin{array}{r} 144.0 \\ 130.9 \\ \hline \end{array}$	149.6		21.3	7862	0.0
Pumpoff \#34	$\begin{aligned} & 1 / 5 / 2022 \\ & 1 / 6 / 2022 \\ & 1 / 7 / 2022 \\ & \hline \end{aligned}$	6738	107.1	$\begin{gathered} 149.6 \\ 86.4 \end{gathered}$	144.0	1523		34.2	673.6	-0.6
Pumpoff \#35	$\begin{gathered} \hline 2 / 8 / 2022 \\ 2 / 15 / 2022 \\ 2 / 16 / 2022 \\ 2 / 17 / 2022 \\ \hline \end{gathered}$	5519	$\begin{aligned} & \hline 6.2 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 144.1 \\ & 125.5 \end{aligned}$	$\begin{aligned} & 140.2 \\ & 121.8 \end{aligned}$			83	555.4	0.6
Residual Tank	$\begin{gathered} 2 / 8 / 2022 \\ 2 / 17 / 2022 \\ \hline \end{gathered}$	207.1	$\begin{gathered} 104.8 \\ 1.5 \\ \hline \end{gathered}$	94.0				68	207.1	0.0
Pumpoff \#36	$\begin{aligned} & 2 / 21 / 2022 \\ & 3 / 18 / 2022 \\ & 3 / 23 / 2022 \\ & 3 / 24 / 2022 \end{aligned}$	6785	$\begin{gathered} 54.9 \\ 3.1 \end{gathered}$	$\begin{gathered} 152.5 \\ 148 \end{gathered}$	$\begin{aligned} & 152.7 \\ & 157.6 \end{aligned}$			31.6	700.4	3.1
Residual Tank	3/18/2022	27.7	27.7					0	27.7	0.0
Pumpoff \#37	$4 / 6 / 2022$ $4 / 22 / 2022$ $5 / 4 / 2022$ $5 / 6 / 2022$	8682	$\begin{gathered} 22.9 \\ 2.8 \end{gathered}$	$\begin{gathered} 146 \\ 145.7 \end{gathered}$	$\begin{array}{r} 151.5 \\ 127.3 \\ \hline \end{array}$	$\begin{gathered} 1562 \\ 70.4 \\ \hline \end{gathered}$		46.2	8690	0.1
Pumpoff \#38	$\begin{gathered} \hline 5 / 15 / 2022 \\ 5 / 31 / 2022 \\ 6 / 1 / 2022 \\ 6 / 2 / 2022 \\ \hline \end{gathered}$	674	$\begin{gathered} 69.2 \\ 3.9 \end{gathered}$	$\begin{aligned} & 145.2 \\ & 140.2 \end{aligned}$	$\begin{aligned} & 150.3 \\ & 136.6 \end{aligned}$			28.6	6740	0.0
Pumpoff \#39	$\begin{aligned} & \hline 6 / 28 / 2022 \\ & 6 / 29 / 2022 \\ & 6 / 30 / 2022 \\ & \hline \end{aligned}$	5383	39.3	$\begin{gathered} 145.7 \\ 142 \end{gathered}$	$\begin{gathered} 143.6 \\ 498 \end{gathered}$			22.0	542.4	0.2

Total Fluid Reconciliation Contd.

Barrels of Oil Collected Daily

	Start Date	Start Time (hrs)	End Date	$\begin{gathered} \text { End Time } \\ (\mathrm{hrs}) \\ \hline \end{gathered}$	Total Collection Duration (Days)	Net Oil Collected (bbl)	RRS Collection Rate Of Oil (bbl/day)	```Collection Rate of Oil (gallon/day)```	
Collection Duration for 1st Trip	4/12/2019	0:00	4/23/2019	1:05	11.0	187.4	17.0	715.7	gallons/day
Collection Duration for 2nd Trip	4/23/2019	1:05	4/30/2019	21:09	7.9	181.6	23.0	965.6	gallons/day
Collection Duration for 3rd Trip	4/30/2019	21:09	5/12/2019	23:20	12.1	295.7	24.4	1026.5	gallons/day
Collection Duration for 4th Trip	5/12/2019	23:20	6/13/2019	17:17	31.5	850.0	27.0	1132.3	gallons/day
Collection Duration for 5th Trip	6/13/2019	17:17	7/21/2019	1:40	37.4	983.7	26.3	1104.7	gallons/day
Collection Duration for 6th Trip	7/21/2019	1:40	8/18/2019	3:15	28.6	757.2	26.5	1112.0	gallons/day
Collection Duration for 7th Trip	8/18/2019	3:15	9/12/2019	22:30	25.8	749.2	29.0	1219.6	gallons/day
Collection Duration for 8th Trip	9/12/2019	22:30	10/9/2019	10:15	26.5	675.8	25.5	1071.1	gallons/day
Collection Duration for 9th Trip	10/9/2019	10:15	11/10/2019	1:05	31.6	659.1	20.8*	875.5	gallons/day
Collection Duration for 10th Trip	11/10/2019	1:05	12/6/2019	10:25	25.9	818.6	31.6*	1327.5	gallons/day
Collection Duration for 11th Trip	12/6/2019	10:25	12/31/2019	22:25	25.5	567.2	22.2	934.2	gallons/day
Collection Duration for 12th Trip	12/31/2019	22:25	1/30/2020	17:50	29.8	528.8	17.7	745.3	gallons/day
Collection Duration for 13th Trip	1/30/2020	17:50	3/2/2020	2:00	31.3	456.4	14.6	612.4	gallons/day
Collection Duration for 14th Trip	3/2/2020	2:00	4/2/2020	1:15	31	798.4	25.8	1081.7	gallons/day
Collection Duration for 15th Trip	4/2/2020	1:15	4/25/2020	15:45	23.1	707.7	30.6	1286.7	gallons/day
Collection Duration for 16th Trip	4/25/2020	15:45	5/15/2020	18:40	20.1	513.0	25.5	1071.0	gallons/day
Collection Duration for 17th Trip	5/15/2020	18:40	6/18/2020	22:55	34.2	834.4	24.4	1024.8	gallons/day
Collection Duration for 18th Trip	6/18/2020	22:55	7/12/2020	15:10	23.7	601.5	25.4	1066.8	gallons/day
Collection Duration for 19th Trip	7/12/2020	15:10	8/13/2020	6:00	33.6	785.5	23.4	982.8	gallons/day
Collection Duration for 20th Trip	8/15/2020	6:00	9/2/2020	13:25	18.3	357.4	19.5	819.0	gallons/day
Collection Duration for 21st Trip	9/2/2020	13:25	10/4/2020	15:20	32.1	548.3	17.1	718.2	gallons/day
Collection Duration for 22nd Trip	10/4/2020	15:20	11/3/2020	16:10	30.0	532.4	17.7	743.4	gallons/day
Collection Duration for 23rd Trip	11/3/2020	16:10	12/10/2020	13:00	36.9	655.4	17.8	747.6	gallons/day
Collection Duration for 24th Trip	12/10/2020	13:00	1/9/2021	9:15	29.8	517.5	17.4	730.8	gallons/day
Collection Duration for 25th Trip	1/9/2021	9:15	2/21/2021	11:30	43.1	624.7	14.5	609.0	gallons/day
Collection Duration for 26th Trip	2/21/2021	11:30	3/15/2021	22:25	22.4	-	-		
Collection Duration for 27th Trip	3/15/2021	22:25	4/8/2021	12:35	23.6	-	-		
Collection Duration for 26-27th Trip	2/21/2021	11:30	4/8/2021	12:35	46.0	792.8	17.2	722.4	gallons/day
Collection Duration for 28th Trip	4/8/2021	12:35	5/14/2021	12:14	36.0	565.2	15.7	659.4	gallons/day
Collection Duraiton for 29th Trip	5/14/2021	12:14	6/11/2021	12:08	28.0	527.4	18.8	789.6	gallons/day
Collection Duration for 30th Trip	6/11/2021	12:08	7/22/2021	13:38	41.1	673.4	16.4	688.8	gallons/day
Collection Duration for 31st Trip	7/22/2021	13:38	9/4/2021	5:40	43.7	-	-	-	gallons/day
Collection Duration for 32nd Trip	9/4/2021	5:40	10/5/2021	15:30	31.4	-	-	-	gallons/day
Collection Duration for 31-32nd Trip	7/22/2021	13:38	10/5/2021	15:30	75.1	1371.7	18.3	768.6	gallons/day
Collection Duration for 33rd Trip	10/5/2021	15:30	11/13/2021	22:29	39.3	688.0	17.5	735.0	gallons/day
Collection Duration for 34th Trip	11/13/2021	22:29	12/14/2022	13:20	30.6	518.5	16.9	709.8	gallons/day
Collection Duration for 35th Trip	12/14/2022	13:20	1/13/2022	23:30	30.4	513.5	16.9	709.8	gallons/day
Collection Duration for 36th Trip	1/13/2022	23:30	2/18/2022	17:25	35.8	578.9	16.2	680.4	gallons/day
Collection Duration for 37th Trip	2/18/2022	17:25	4/4/2022	17:56	45.0	768.5	17.1	718.2	gallons/day
Collection Duration for 38th Trip	4/4/2022	17:56	5/11/2022	16:43	36.9	547.6	14.8	621.6	gallons/day
Collection Duration for 39th Trip	5/11/2022	16:43	6/7/2022	15:50	26.9	455.1	16.9	709.8	gallons/day
Collection Duration for 40th Trip	6/7/2022	15:50	7/14/2022	5:15	36.6	619.2	16.9	709.8	gallons/day
Collection Duration for 41st Trip	7/14/2022	5:15	8/5/2022	1:45	21.9	387.6	17.7	743.4	gallons/day
Collection Duration for 42nd Trip	8/5/2022	1:45	9/2/2022	14:35	28.5	514.9	18.1	760.2	gallons/day
Collection Duration for 43rd Trip	9/2/2022	14:35	10/1/2022	18:16	29.2	498.6	17.1	718.2	gallons/day
Collection Duration for 44th Trip	10/1/2022	18:16	11/2/2022	10:40	31.7	530.2	16.7	701.4	gallons/day
Collection Duration for 45th Trip	11/2/2022	10:40	12/2/2022	2:09	29.6	549.0	18.5	777.0	gallons/day

Barrels of Oil Collected Per Day Since RRS Install

	Start Date	Start Time (hrs)	End Date	End Time (hrs)	Total Collection Duration (Days)	Net Oil Collected (bbl)	RRS Collection Rate Of Oil (bbl/day)	```Collection Rate of Oil (gallon/day)```	
Average collection to date less residual tank	4/12/2019	0:00	12/2/2022	2:09	1330.1	26,287.1	19.8	831.6	gallons/day
Total Collection to date	4/12/2019	0:00	11/2/2022	2:09	1330.1	27,510.5	20.7	869.4	gallons/day

Totals from Pumpoff 1-45

	Bbl	Gal
Net Oil collected	$27,510.5$	$1,155,441.0$
Total Oily fluids collected:	$30,927.1$	$1,298,938.2$

Appendix 1

MC20 Product Removal and Transportation with Completed Documentation

GOUVILLION

Couvilion Group, LLC
Attachment A: Dockside Transfer - Transfer of Liquid and Crude Oil in Accordance with Maintenance
Date: \qquad $12-3-22$

Time Transfer Ended: \qquad

Note: If the \% Difference is greater than 3\% please attempt to explain the difference: \qquad

Page 7 of 15
Doc \#: Couv-O\&M-Doc-00004

Attachment B: Port Fourchon Shore Base On-Site Interim Tank Storage Measurements Before Offloading to Tank Trucks (Decanting of Water)

Date: $12-19-22$
Time: \qquad
Time Measurements begin after Vessel Offloading in hours: \qquad

Attachment D: Decanted Water from Frac Tanks to Disposal Facility

Date: $12-19-22$

Residual Volume left in Tanks

	Strap Measurement bbl
Tank 1	302.0
Tank 2	301.2
Tank 3	

Page 12 of 15
Doc \#: Couv-O\&M-Doc-00004

CaUVILLION
Couvillion Group, LLC

Attachment C: WASTE MANAGEMENT TRACKING FORM

Qily Water Transportation and Net Crude Oil

Start Shipments Date: $12-20-22$

Manifest Number	Transporter	Truck Number 332008	Date	Receiving Facility	Manifested Volume loaded from Port Fourchon Frac Tank into Truck (bbl from Strap)	Volume received by Buyer (bbt by Strap)	Net Crude Oil bbls (Acadiana Oil Ticket)
$\frac{1}{2}$	Deepwell AOC	333008	$12 / 20$ $12 / 20$	HOC	$\begin{aligned} & 144.9 \\ & 150 . ? \end{aligned}$		
3	$A O C$	2001-01	$\begin{aligned} & 12 / 20 \\ & 12 / 20 \end{aligned}$	$\begin{aligned} & \text { AOC } \\ & \text { AOC } \end{aligned}$	$\frac{150.3}{149.5}$		
Total Volumes Shipped by Gallons/bbls							

End of Shipments date: \qquad

Sign-off by:USCG Rep (Optional) Signed Name:

Couvillion Rep
NRC Rep

Doc \#: Couv-O\&M-Doc-00004

Page 9 of 15

Attachment C: WASTE MANAGEMENT TRACKING FORM Residual Frae Tank Bottoms

$$
\text { Date: } 12-20-22
$$

Residual Volume left in Tanks

	Strap Measurement after Trucks Loaded in each tank bbl	
Tank 1	6.8	
Tank 2	151.7	
Tank 3		

Attachment C: WASTE MANAGEMENT TRACKING FORM

Qily Water Transportation and Net Crude Oil
Start Shipments Date: $12 \cdot 21.22$

Manifest Number	Transporter	Truck Number	Date	Receiving Facility	Manifested Volume loaded from Port Fourchon Frac Tank into Truck (bbl from Strap)	Volume received by Buyer (bbl by Strap)	Net Crude Oil bbls (Acadiana Oil Ticket)
4	AQC	$2001-01$	$12 / 21$	AOC	145.7		
5	AOC	$2001-03$	$12 / 21$	AOC	62.5		

End of Shipments date:

Doc \#: Couv-O\&M-Doc-00004
Page 9 of 15
-

Attachment C: WASTE MANAGEMENT TRACKING FORM Transportation Tracking of Petroleum Contaminated Solids

Manifest Number	Transporter	Shipment Date	Receiving Facility	Manifested Volume (Yard)	Scaled Weight (Lb)	Comments (Box Numbers, etc.)	

Page 11 of 15

Courvillion Graup, LLC

Attachment C: WASTE MANAGEMENT TRACKING FORM Residual Frac Tank Bottoms

Date: 12.21 .22

Residual Volume left in Tanks

	Strap Measurement after Trucks Loaded in each tank bbls
Tank 1	6.8
Tank 2	6.0
Tank 3	-

STRAIGHT BILL OF LADING - SHORT FORM
NOTICE: Shippers of hazardous materials must enter 24-hour emergency response telephone number under "Emergency Response Phone Number Original-Not Negotiable

Date \qquad $12-20-22$ Bill of Lading No.Shipper No. \qquad

Note-Where the rate is dependent in value, shippers are required to
Subject to Section 7 of the conditions, if this shipment is to be delivered to the consigriee without nocourge an the consignor: the consignor shall sign the following statement.

The carrier shall not make delivery of this shipment without payment of freight and all other charges
The agreed on declared value of the property is hereby specifically by the shuper to te not exceeding
\qquad per \qquad
(Signature of Consignor:)
RECEIVED, subject to the classificabons and lawfully filed tariff in effect on the tate of the issue of this Bill of Lading. The property describer above in apparent gong of

 shipper and acosepted for himself and his ussigns

Transportation Fiegulstione governing the mansnortition of hazardous rmavelata, The use of tries solumn es

\square
Marked, and labeled, end are in proper acinditian for tramapartation atacording wu bia applicable regulations of the U.S. Departanent of Transportation,

EMERGENCY RESPONSE CONTACT:
ES\&H
985-851.5055
operator Couvillion

Lease Name
fourchoras

"THIS IS TO CERTIFY THAT THE ABOVE NAMED MATERIALS ARE PROPERLY CLASSIFIED, DESCRIBED, PACKAGED, MARKED, AND LABELED AND ARE IN PROPER CONDITION FOR TRANSPORTATION, ACCORDING TO THE APPLICABLE REGULATIONS OF THE DEPARTMENT OF TRANSPORTATION".

Shipper: Mike LeBlanc Jr. Date:

Note-Where the rate is dependent on value. shippers are required to state specatically in writing the agreed or declared value of the property. The agreed or decfared value of tha property is hereby specifically stated by the shipper to be not exceerding

Subject to Section 7 of the condicions, if this shipment is to be delivered to the consignee without recourse on the consignor; the consignor shall sign the following statement.
The carrier shall not make delivery of this shipment without payment of freight and all other charges.
$\$$ \qquad per \qquad
[Sirnabure of Consigner.]
 and condition of contenta of packoges unknown), marked, consigned, and destined as indicated above which said carrier fthe word carrier being understand throughout this conts or corporation in prssession of the property under the rontracti agraes to carry to its ubual place of delvery at said destination, if an its route, atherwise to delvor to another destination. It m mutually agreed as to wach carreer of all or any of, said property over all or any portion of said route to desunation and as to each party at any time intareste erty, that ivery servica to tif performed hereunder shall be subpect to all Uhe terms and conditions of the Uniform Dontestic Straight Bil of Lading set forth (1) al Uniform freigt the date hevenf, it this is a reil or a ralwater shoment or $|2|$ in the apolicable monor camier classification or tarift, if this is a motor carner shipmert. Silupper hereby certinie
 stipper and accepted for himself and his assigns

ant ill

\qquad
marked, and labeled, and are in proper condition for transportatian anacording to the applicablie regulations of the U.S. Departanent of 'iranspartation.
tion was made avalable and/or cartier has the U,S. Department of Transportation en or aquivalent documentation in the vahicle. Property described above is received it gf

ACAIIIANA OIL \& ENVIRONMENTAL CORPORATION

Lease Run Ticket

 337-560-5573EMERGENCY RESPONSE CONTACT:
ES \&H
985-851-5055

opamax COUUillionderno of
Lease Name

Field
Faurcher

"THIS IS TO CERTIFY THAT THE ABOVE NAMED MATERIALS ARE PROPERLY CLASSIFIED, DESCRIBED, PACKAGED, MARKED, AND LABELED AND ARE IN PROPER CONDITION FOR TRANSPORTATION, ACCORDING TO THE APPLICABLE REGULATIONS OF THE DEPARTMENT OF TRANSPORTATION".

Shipper: Mike LeBlanc Jr. Date:

STRAIGHT BILL OF LADING - SHORT FORM
NOTICE: Shippers of hazardous materials must enter 24 hour emergency response telephone number under "Emergency Response Phone Number
nose $12-20-22$
Bill of Lading No.

Note-Where the rate is dependent on value, shippers are required to state specifically in writing the agreed or declared value of the property. The agreed or declared value of the property is hereby specifically stated by the shaper to be not exceeding
\qquad per \qquad
Subject to Section 7 of the conditions, if this shipment, is to be delivered to the caneignse wort recourse on the consignor, the consignor shall sign the following statement The carver shall nat. make delivery of this shipment without payment of freppit ind all the: charges
$\$$

 of corporation in possession of the property tinder the contract) agrees to carry to its listed above which said carrier (the word carrier henge understood throughout this beth

 shipper' and accepted for hirrself and his assagris. set forth ill the classification on tariff which governs the transportation of this shipment. and the said temper hereby oectahi

 mons 172207 (Harangous Material Tablet and Fer ont of the followngper Sec or de
may
 or equivalent documentation The verier has the le. Property department of Transportation en

ACAIIIANA OIL \& ENVIRONMENTAL CORPORATION

EMERGENCY RESPONSE CONTACT:
ES\&H
985-851-5055

Lease Name
Filed Fourchor, la

"THIS IS TO CERTIFY THAT THE ABOVE NAMED MATERIALS ARE PROPERLY CLASSIFIED, DESCRIBED, PACKAGED, MARKED, AND LABELED AND ARE IN PROPER CONDITION FOR TRANSPORTATION, ACCORDING TO THE APPLICABLE REGULATIONS OF THE DEPARTMENT OF TRANSPORTATION".

Shipper: Mike LeBlanc Jr. Date:

NOTICE: Shippers of hazardous materials must enter 24 hour emergency Original—Not Negotiable

Date
12.21 .22
of Compar
\qquad

Route:
turn ormanace

- 1 mom er

Weight Phone Numb ur UNIT67 Petroleum Crude OH, 3, ps, II

COD.

state Where the rate is dependent on value, shippers are required to state spechically in writhing the agreed or declared value of the property by the shipper to be not exceeding property is hereby specifically stated
\$ \qquad jor \qquad
RECEIVED, subject to the clessatications and lawfully filed tariff e in elfin (Signature of Consignor])
or corporation in contents of packages unknown), marked, consigned, and destined as date of the issue of this Bill of Lading, the property described above in apparent gond of
 the date hereof, if this is a performed hereunder shall be subject to all property over all or any portion of said raid destination, if on its rate, otherwise to deliver to another the terms and conditions of the sand bill of ladingipment or (2) in the applicable motor carrier clasolioge Uniform Domestic Straight Bill of Lading set forty at any time inters shipper and accepted for himself and his assigns Mark with -fat il

Trenspor ahem haida
 SHIPPER \square
 or equivalent documentation in the vehicle property department of Transportation en and er property deamibed above is received in go

ALADIANA UL \& ENYIKUNMENIAL
CORPORATION
TRANSPORT MANIFEST
1206 Lemaire St. - New Iberia, LA 70560 337-560-5573

EMERGENCY RESPONSE CONTACT:
985-851.5055

Lease Name

- Frack he

TIME
ARRIVED

TIME

ID. NUMBER	PROPER SHIPPING NAME	HAZARD CLASS	PG	TOTAL BELS
UN 1267	PETROLEUM CRUDE OIL	3	111	21098
	Temp			27
	SW			208

"THIS IS TO CERTIFY THAT THE ABOVE NAMED MATERIALS ARE PROPERLY CLASSIFIED, DESCRIBED, PACKAGED, MARKED, AND LABELED AND ARE IN PROPER CONDITION FOR TRANSPORTATION, ACCORDING TO THE APPLICABLE REGULATIONS OF THE DEPARTMENT OF TRANSPORTATION".
-inicioni bILL DF LADING - SHORT FORM response telephone numberdous materials must enter 24-hour emergency Original-Not Negotiable

Date 12.21 .22
 state specifically in wing tune cored The agreed of declared value of the proper by the shipper to be not exceeding
\qquad
\qquad
and condition of contents of the classifications and lawfully filed tariffs in effect an and

隹

SHIPPER \square

ACADIAN OIL \& ENVIRONMENTAL CORPORATION spearer Couvillion soses o dalllll

Lease Name
Field $\quad \mathrm{OL}$

TEMPERATURE
OF OIL

"THIS IS TO CERTIFY THAT THE ABOVE NAMED MATERIALS ARE PROPERLY CLASSIFIED, DESCRIBED, PACKAGED, MARKED, AND LABELED AND ARE IN PROPER CONDITION FOR TRANSPORTATION, ACCORDING TO THE APPLICABLE REGULATIONS OF THE DEPARTMENT OF TRANSPORTATION".

Shipper: Mike LeBlanc Jr. Date:

Appendix II

NRC Waste Handling Documentation

G \& L WELL SERVICE, INC.

P. O. Box 2673

Lafayette, Louisiana 70502

Address \qquad
Work Order No.
Well Serial No.
Lease \qquad Field \qquad Fourchom \qquad Well No.

Description or Work Done

HoTO:I Three frack Tent To 135°

Job Safety and Environmental Analysis

TASK DESCRIPTION：MC 20 Recovered Crude Oil／Vessel to Shore Transfer
$12-12-22$
SUMMARY OF POTENTIAL HAZARDS（Check applicable）

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{【 Heavy or awkward lifting／ movement} \& 区 Pinch Points or caught between \& \multicolumn{2}{|l|}{区 Working and walking surfaces；slip，trip，fall} \\
\hline \multicolumn{2}{|l|}{\(\square\) New／Inexperienced employees} \& \(\boxtimes\) Spill／containment \& \multicolumn{2}{|l|}{\ Heat stress environment} \\
\hline \multicolumn{2}{|l|}{\ Struck by or crush hazard} \& 区 Noise levels（＞85 dBA） \& \multicolumn{2}{|l|}{\(\square\)} \\
\hline \multicolumn{2}{|l|}{\(\triangle\) Hazardous liquids，vapors，waste} \& 区 Elevated surfaces／Fall／Ladders \& \multicolumn{2}{|l|}{\(\square\)} \\
\hline \multicolumn{5}{|c|}{APPLICABLE REGULATION／SOPS／ALERTS} \\
\hline \multicolumn{2}{|l|}{\(\square\) SMS 19．2 Vacuum Trucks} \& \(\square\) \& \multicolumn{2}{|l|}{\(\square\)} \\
\hline \multicolumn{5}{|c|}{MINIMUM PERSONAL PROTECTIVE EQUIPMENT（Check applicable）} \\
\hline Level A
Level B
Level C
Level D \& \begin{tabular}{l}
Hard Hat \\
Safety Glasses \\
Face Shield \\
Hearing Protection
\end{tabular} \& High Visibility Vest
Long Sleeves／Coveralls
Chemical protective clothing
Respirator： \(\qquad\) \& \begin{tabular}{l}
Leather Steel Toe Boots
Disposable boot covers
Neoprene Steel Toe Boots \\
Gloves： \(\qquad\)
\end{tabular} \& PFD／Work vest

\qquad

\qquad

\hline
\end{tabular}

JOB HAZARD ANALYSIS

（1）Job Steps	2 Potential Hazards	3 Preventive Measures／Special PPE
1．Pre－job Meetings Behavior Based Safety	－Personnel do not understand the operational plan，relevant hazards or their roles／responsibilities －Personnel do not stop work when hazards are identified －Personnel do not report injuries， illnesses，near misses or incidents	－The operational plan，hazards and controls will be explained to all involved personnel in Safety／Ops meeting．Personnel will be encouraged to ask questions if they are unsure of any project details －Immediate supervisor will remind their crews of their Authority and Responsibility to Stop work and contact their supervisor if they discover a hazard －Personnel will be instructed to report any injuries，illnesses， near misses or incidents
2．Site Survey and Equipment Set－up	－Uneven working surfaces and trip hazards． －Equipment not certified，not tested or damaged －Improper set－up due to untrained or unqualified personnel	－Inspect site for correctable walking surface hazards．Flag or correct unsafe conditions．Position equipment and hoses away from travel paths．Identify＂no－go＂areas． －All equipment will be inspected for current certifications， testing and serviceable working condition prior to work －Personnel will be pre－selected to perform tasks based on verified competency
3．Vehicle movements	－Personnel，equipment or hoses struck or crushed by moving vehicles or equipment －Vehicles not inspected prior to movements．Unsafe for travel． －Unsecured items create dropped object or road hazards．	－Ground guides will be used for equipment movements． Non－essential personnel will clear the travel path．Travel path will be confirmed as clear prior to movements． －Vehicles will be inspected by drivers prior to travel and after travel for potential damage． －Vehicles will be inspected to ensure that there are no loose items and that loads are secured properly．
4．Mooring Vessel and working near water	－Personnel struck by thrown lines or caught in＂line of fire＂． －Personnel pinched or crushed during vessel movements． －Personnel fall into the water．Man overboard．	－When tossing the mooring lines to the shore allow the lines to fall on the ground and pick them up．Do not attempt to catch mooring lines from the M / V ． －When mooring the vessel，keep hands，fingers，arms，and all other body parts from between the mooring line and the bits on the dock －Never work alone．All personnel within 5^{\prime} of the docks edge are required to wear a USCG approved PFD．Always discuss ＂man overboard＂procedures prior to work．Have life ring and recovery plan in place．
5．Connecting hoses	－Personnel crushed or pinched while connecting transfer hoses． －Personnel suffer back strain or other ergonomic related injuries during connections or moving hoses －Slip／trip／fall hazards while working	－Identify，communicate and avoid all crush／pinch points： including cam－lock connections，vehicles and other moving parts or equipment －Transfer hoses can be heavy and when handling these hoses employees shall use proper ergonomic practices including keeping your back as straight as possible as well as lifting with your knees and not your back －Observe good housekeeping and maintain situational

	SAFETY MANAGEMENT SYSTEM	SAFETY
	Job Hazard Analysis	Revision: 08/2015

(1) Job Steps	2) Potential Hazards	(3) Preventive Measures / Special PPE
		awareness when walking in the dock area. Try to run hoses in an area that is out of the normal walking path and go around if possible
6. Working in potentially hazardous atmospheres	- Personnel exposed to hazards related to hazardous atmospheres. - Ignition sources create potential for explosive conditions - Personnel not equipped to suppress incipient fire	- Calibrated multi-gas meters/detectors will be used to confirm that LEL's, CO and other gases are within safe range for pumping and transfer operations. Operations will transfer operations will stop immediately if LEL's or Carbon Monoxide levels become elevated - A protective distance of 100^{\prime} outside shoreside transfer will be identified, and marked with caution tape and warning signs, to prohibit smoking, sparks and any potential source of ignition within the transfer area perimeter. The $M N$ will suspend all similar activities for the duration of transfer operations. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
7. Energizing pneumatic equipment:	- Personnel injured when struck by hoses or pressure during hose connection or fitting failure. - Air leaks or blowout causing pressure related injuries. - Hearing loss/injury due to noise levels above 85 decibels	- All pressurized hoses will have whip checks and safety clips installed prior to energizing. All pneumatic hoses will be inspected prior to use. - Pumping operations will be stopped immediately if leaks are detected during operations. Defective hoses will be replaced with new hoses/whips. - Hearing protection will be worn in all areas where highnoise machinery and equipment is being operated.
8. Transfer of recovered crude oil	- Personnel contacted by crude oil spray or environmental release. - Overfilling tank resulting in spills - Personnel overcome by potentially hazardous vapors	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure. Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. The DOI Declaration of Inspection will be completed prior to operations. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4-gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be worn and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
9. Transfer of oil into transporter	- Personnel contacted by crude oil spray or environmental release - Overfilling transportation vessel resulting in spills - Personnel overcome by potentially hazardous vapors - Fall hazards present if personnel are working above 6 feet	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure. Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4 -gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are

SAFETY MANAGEMENT SYSTEM	$\left(\begin{array}{\|c\|}\hline \overline{\text { SAFETY }} \\ \hline \text { SAFEM } \\ \hline\end{array}\right.$ Job Hazard Analysis	Revision: 08/2015

(1) Job Steps	2) Potential Hazards	(3) Preventive Measures / Special PPE
		detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6 ': fall protection will be wom and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
10. Prolanged exposure to elements (Heat Stress)	- Inadequate hydration - Extended work periods without rest resulting in heat stress	- Personnel will be encouraged to hydrate frequently. Water to sports drink ratio will be 3:1 (1 sports drink to 3 waters consumed). - Work to rest schedules will be determined based on the ambient temperature, acclimatization of personnel and work being performed. Heat stress potential and signs/symptorns will be discussed at all safety meetings, tailgate meetings and during breaks. Personnel will be encouraged to self-report any early symptoms of heat stress. All personnel will be advised that stop work authority applies to poteritial heat stress symptoms they may be experiencing, (or that they suspect with coworkers).
11. Break time	- Potential for ingestion of petroleum product or other contaminants. - Fire hazards from unrestricted smoking - Direct sun reduces recovery time for workers during breaks - Inadequate water	- Personnel will wash hands before smoking, eating, drinking or any other activity where contaminants might be ingested. This hazard will be stressed in break areas. - Only smoke in designated areas. - Ensure that break areas have adequate shade and cooling potential for personnel - Personnel are more likely to hydrate when cool water is available. Ensure an adequate supply and include sports drinks with electrolytes to be consumed sparingly.
12. Decontaminate Personnel	- Potential for secondary contamination by absorption, injection, or ingestion	- Follow decontamination plan for clothing removal and disposal when protective outerwear is required and becomes contaminated. - Only use safety scissors (never knives) to cut Tywek from personnel. - Ensure that workers wash hands and face thoroughly.
NRC INCIDENT REPORTING POLICY	- First Aid - OSHA recordable - Illness/Injury - Near Miss - Equipment/Vehicle Damage	- NRC employees and subcontractors are required to immediately report all incidents to their supervisor. - The immediate supervisor will immediately report the incident to the site safety professional, HSEQ Manager, and Project Manager. - As soon as possible the affected employee will complete the required form, if an injury then the first report of injury; if near miss, then a near miss / safety suggestion form will be completed. - The supervisor will complete a root cause analysis of all reported incidents and submit to the HSEQ manager within 8 hours of an incident. - Determination will be made regarding need for post-incident drug and alcohol testing based on NRC policy. - Contact HSEQ Manager for proper USCG reports, if needed and what report is needed.

REVIEW

SAFETY MANAGEMENT SYSTEM	$\left(\begin{array}{c}\text { SAFETY } \\ \text { SASE }\end{array}\right]$	
	Job Hazard Analysis	Revision: 08/2015

(
$12-12-22$
$10 / 1 / 122$
$12 \cdot 12-27$
$12-12-27$
$18-12-22$

JOB HAZARD ANALYSIS

(1) Job Steps	2 Potential Hazards	(3) Preventive Measures / Special PPE
1. Pre-job Meetings Behavior Based Safety	- Personnel do not understand the operational plan, relevant hazards or their roles/responsibilities - Personnel do not stop work when hazards are identified - Personnel do not report injuries, illnesses, near misses or incidents	- The operational plan, hazards and controls will be explained to all involved personnel in Safety/Ops meeting. Personnel will be encouraged to ask questions if they are unsure of any project details - Immediate supervisor will remind their crews of their Authority and Responsibility to Stop work and contact their supervisor if they discover a hazard - Personnel will be instructed to report any injuries, illnesses, near misses or incidents
2. Site Survey and Equipment Set-up	- Uneven working surfaces and trip hazards. - Equipment not certified, not tested or damaged - Improper set-up due to untrained or unqualified personnel	- Inspect site for correctable walking surface hazards. Flag or correct unsafe conditions. Position equipment and hoses away from travel paths. Identify "no-go" areas. - All equipment will be inspected for current certifications, testing and serviceable working condition prior to work - Personnel will be pre-selected to perform tasks based on verified competency
3. Vehicle movements	- Personnel, equipment or hoses struck or crushed by moving vehicles or equipment - Vehicles not inspected prior to movements. Unsafe for travel. - Unsecured items create dropped object or road hazards.	- Ground guides will be used for equipment movements. Non-essential personnel will clear the travel path. Travel path will be confirmed as clear prior to movements. - Vehicles will be inspected by drivers prior to travel and after travel for potential damage. - Vehicles will be inspected to ensure that there are no loose items and that loads are secured properly.
4. Mooring Vessel and working near water	- Personnel struck by thrown lines or caught in "line of fire". - Personnel pinched or crushed during vessel movements. - Personnel fall into the water. Man overboard.	- When tossing the mooring lines to the shore allow the lines to fall on the ground and pick them up. Do not attempt to catch mooring lines from the M / V. - When mooring the vessel, keep hands, fingers, arms, and all other body parts from between the mooring line and the bits on the dock - Never work alone. All personnel within 5^{\prime} of the docks edge are required to wear a USCG approved PFD. Always discuss "man overboard" procedures prior to work. Have life ring and recovery plan in place.
5. Connecting hoses	- Personnel crushed or pinched while connecting transfer hoses. - Personnel suffer back strain or other ergonomic related injuries during connections or moving hoses - Slip/trip/fall hazards while working	- Identify, communicate and avoid all crush/pinch points: including cam-lock connections, vehicles and other moving parts or equipment - Transfer hoses can be heavy and when handling these hoses employees shall use proper ergonomic practices including keeping your back as straight as possible as well as lifting with your knees and not your back - Observe good housekeeping and maíntain situational

| SAFETY MANAGEMENT SYSTEM | $\overline{\text { SAFETY }}$
 Job Hazard Analysis |
| :---: | :---: | :---: |

(1) Job Steps	2 Potential Hazards	3 Preventive Measures / Special PPE
		awareness when walking in the dock area. Try to run hoses in an area that is out of the normal walking path and go around if possible
6. Working in potentially hazardous atmospheres	- Personnel exposed to hazards related to hazardous atmospheres. - Ignition sources create potential for explosive conditions - Personnel not equipped to suppress incipient fire	- Calibrated multi-gas meters/detectors will be used to confirm that LEL's, CO and other gases are within safe range for pumping and transfer operations. Operations will transfer operations will stop immediately if LEL's or Carbon Monoxide levels become elevated - A protective distance of 100^{\prime} outside shoreside transfer will be identified, and marked with caution tape and warning signs, to prohibit smoking, sparks and any potential source of ignition within the transfer area perimeter. The M / V will suspend all similar activities for the duration of transfer operations. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
7. Energizing pneumatic equipment	- Personnel injured when struck by hoses or pressure during hose connection or fitting failure. - Air leaks or blowout causing pressure related injuries. - Hearing loss/injury due to noise levels above 85 decibels	- All pressurized hoses will have whip checks and safety clips installed prior to energizing. All pneumatic hoses will be inspected prior to use. - Pumping operations will be stopped immediately if leaks are detected during operations. Defective hoses will be replaced with new hoses/whips. - Hearing protection will be worn in all areas where highnoise machinery and equipment is being operated.
8. Transfer of recovered crude oil	- Personnel contacted by crude oil spray or environmental release. - Overfilling tank resulting in spills - Personnel overcome by potentially hazardous vapors	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure. Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. The DOI Declaration of Inspection will be completed prior to operations. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4 -gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be worn and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
9. Transfer of oil into transporter	- Personnel contacted by crude oil spray or environmental release - Overfilling transportation vessel resulting in spills - Personnel overcome by potentially hazardous vapors - Fall hazards present if personnel are working above 6 feet	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure. Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4 -gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are

| SAFETY MANAGEMENT SYsTEM | $\left(\begin{array}{\|c\|c\|}\hline \text { SAFETY } \\ \text { SAF } \\ \hline & \text { Job Hazard Analysis }\end{array}\right.$ |
| :---: | :---: | :---: |

(1) Job Steps	2 Potential Hazards	3 Preventive Measures / Special PPE
		detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be wom and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
10. Prolonged exposure to elements (Heat Stress)	- Inadequate hydration - Extended work periods without rest resulting in heat stress	- Personnel will be encouraged to hydrate frequently. Water to sports drink ratio will be 3:1 (1 sports drink to 3 waters consumed). - Work to rest schedules will be determined based on the ambient temperature, acclimatization of personnel and work being performed. Heat stress potential and signs/symptoms will be discussed at all safety meetings, tailgate meetings and during breaks. Personnel will be encouraged to self-report any early symptoms of heat stress. All personnel will be advised that stop work authority applies to potential heat stress symptoms they may be experiencing, (or that they suspect with coworkers).
11. Break time	- Potential for ingestion of petroleum product or other contaminants. - Fire hazards from unrestricted smoking - Direct sun reduces recovery time for workers during breaks - Inadequate water	- Personnel will wash hands before smoking, eating, drinking or any other activity where contaminants might be ingested. This hazard will be stressed in break areas. - Only smoke in designated areas. - Ensure that break areas have adequate shade and cooling potential for personnel - Personnel are more likely to hydrate when cool water is available. Ensure an adequate supply and include sports drinks with electrolytes to be consumed sparingly.
12. Decontaminate Personnel	- Potential for secondary contamination by absorption, injection, or ingestion	- Follow decontamination plan for clothing removal and disposal when protective outerwear is required and becomes contaminated. - Only use safety scissors (never knives) to cut Tyvek from personnel. - Ensure that workers wash hands and face thoroughly.
NRC INCIDENT REPORTING POLICY	- Flrst Aid - OSHA recordable - Illness/Injury - Near Miss - Equipment/Vehicle Damage	- NRC employees and subcontractors are required to immediately report all incidents to their supervisor. - The immediate supervisor will immediately report the incident to the site safety professional, HSEQ Manager, and Project Manager. - As soon as possible the affected employee will complete the required form, if an injury then the first report of injury; if near miss, then a near miss / safety suggestion form will be completed. - The supervisor will complete a root cause analysis of all reported incidents and submit to the HSEQ manager within 8 hours of an incident. - Determination will be made regarding need for post-incident drug and alcohol testing based on NRC policy. - Contact HSEQ Manager for proper USCG reports, if needed and what report is needed.

REVIEW

	SAFETY MANAGEMENT SYSTEM	SAFETY
	Job Hazard Analysis	Revision: 08/2015

| $12-19-22$ |
| :--- | :--- |
| $12-19-22$ |

Job Hazard Analysis

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{TASK DESCRIPTION：MC 20 Recovered Crude Oil／Vessel to Shore Transfer \(12-20-22\)} \\
\hline \multicolumn{5}{|c|}{SUMMARY OF POTENTIAL HAZARDS（Check applicable）} \\
\hline \multicolumn{2}{|l|}{Heavy or awkward lifting／ movement} \& \(\triangle\) Pinch Points or caught between \& \multicolumn{2}{|l|}{\Working and walking surfaces；slip，trip，fall} \\
\hline \multicolumn{2}{|l|}{\(\square\) New／Inexperienced employees} \& Q Spill／containment \& \multicolumn{2}{|l|}{\ Heat stress environment} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\ Hazardous liquids，vapors，waste}} \& \ Noise levels（ \(>85 \mathrm{dBA}\) ） \& \multicolumn{2}{|l|}{\(\square\)} \\
\hline \& \& \ Elevated surfaces／Fall／Ladders \& \multicolumn{2}{|l|}{\(\square\)} \\
\hline \multicolumn{5}{|c|}{APPLICABLE REGULATIO／SOPS／ALERTS} \\
\hline \multicolumn{2}{|l|}{\(\square\) SMS 19．2 Vacuum Trucks} \& \(\square\) \& \multicolumn{2}{|l|}{\(\square\)} \\
\hline \& \& NIMUM PERSONAL PROTECTIVE E \& UIPMENT（Check applicable） \& \\
\hline \begin{tabular}{l}
\(\square\) Level A \\
\(\square\) Level B \\
\(\square\) Level C \\
Q Level D
\end{tabular} \& \begin{tabular}{l}
\(\triangle\) Hard Hat \\
\(\triangle\) Safety Glasses \\
\(\square\) Face Shield \\
UHearing Protection
\end{tabular} \& High Visibility Vest
Long Sleeves／Coveralls
Chemical protective clothing
Respirator： \(\qquad\) \& \begin{tabular}{l}
．eather Steel Toe Boots
Disposable boot covers
Neoprene Steel Toe Boots \\
Q Gloves： \(\qquad\)
\end{tabular} \& 【 PFD／Work vest
\(\square\) ——＿＿－＿－＿

\qquad

\hline
\end{tabular}

（1）Job Steps	（2）Potential Hazards	
1．Pre－job Meetings Behavior Based Safety	－Personnel do not understand the operational plan，relevant hazards or their roles／responsibilities －Personnel do not stop work when hazards are identified －Personnel do not report injuries， illnesses，near misses or incidents	－The operational plan，hazards and controls will be explained to all involved personnel in Safety／Ops meeting．Personnel will be encouraged to ask questions if they are unsure of any project details －Immediate supervisor will remind their crews of their Authority and Responsibility to Stop work and contact their supervisor if they discover a hazard －Personnel will be instructed to report any injuries，illnesses， near misses or incidents
2．Site Survey and Equipment Set－up	－Uneven working surfaces and trip hazards． －Equipment not certified，not tested or damaged －Improper set－up due to untrained or unqualified personnel	－Inspect site for correctable walking surface hazards．Flag or correct unsafe conditions．Position equipment and hoses away from travel paths．Identify＂no－go＂areas． －All equipment will be inspected for current certifications， testing and serviceable working condition prior to work －Personnel will be pre－selected to perform tasks based on verified competency
3．Vehicle movements	－Personnel，equipment or hoses struck or crushed by moving vehicles or equipment －Vehicles not inspected prior to movements．Unsafe for travel． －Unsecured items create dropped object or road hazards．	－Ground guides will be used for equipment movements． Non－essential personnel will clear the travel path．Travel path will be confirmed as clear prior to movements． －Vehicles will be inspected by drivers prior to travel and after travel for potential damage． －Vehicles will be inspected to ensure that there are no loose items and that loads are secured properly．
4．Mooring Vessel and working near water	－Personnel struck by thrown lines or caught in＂line of fire＂． －Personnel pinched or crushed during vessel movements． －Personnel fall into the water．Man overboard．	－When tossing the mooring lines to the shore allow the lines to fall on the ground and pick them up．Do not attempt to catch mooring lines from the M／V． －When mooring the vessel，keep hands，fingers，arms，and all other body parts from between the mooring line and the bits on the dock －Never work alone．All personnel within 5^{\prime} of the docks edge are required to wear a USCG approved PFD．Always discuss ＂man overboard＂procedures prior to work．Have life ring and recovery plan in place．
5．Connecting hoses	－Personnel crushed or pinched while connecting transfer hoses． －Personnel suffer back strain or other ergonomic related injuries during connections or moving hoses －Slip／trip／fall hazards while working	－Identify，communicate and avoid all crush／pinch points： including cam－lock connections，vehicles and other moving parts or equipment －Transfer hoses can be heavy and when handling these hoses employees shall use proper ergonomic practices including keeping your back as straight as possible as well as lifting with your knees and not your back －Observe good housekeeping and maintain situational

	SAFETY MANAGEMENT SYSTEM	SAFETY
	Job Hazard Analysis	- 0812

(1) Job Steps	2 Potential Hazards	(6) Preventive Measures / Special PPE
		awareness when walking in the dock area. Try to run hoses in an area that is out of the normal walking path and go around if possible
6. Working in potentially hazardous atmospheres	- Personnel exposed to hazards related to hazardous atmospheres. - Ignition sources create potential for explosive conditions - Personnel not equipped to suppress incipient fire	- Calibrated multi-gas meters/detectors will be used to confirm that LEL's, CO and other gases are within safe range for pumping and transfer operations. Operations will transfer operations will stop immediately if LEL's or Carbon Monoxide levels become elevated - A protective distance of 100^{\prime} outside shoreside transfer will be identified, and marked with caution tape and warning signs, to prohibit smoking, sparks and any potential source of ignition within the transfer area perimeter. The M N will suspend all similar activities for the duration of transfer operations. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
7. Energizing pneumatic equipment	- Personnel injured when struck by hoses or pressure during hose connection or fitting failure. - Air leaks or blowout causing pressure related injuries. - Hearing loss/injury due to noise levels above 85 decibels	- All pressurized hoses will have whip checks and safety clips installed prior to energizing. All pneumatic hoses will be inspected prior to use. - Pumping operations will be stopped immediately if leaks are detected during operations. Defective hoses will be replaced with new hoses/whips. - Hearing protection will be worn in all areas where highnoise machinery and equipment is being operated.
8. Transfer of recovered crude oil	- Personnel contacted by crude oil spray or environmental release. - Overfilling tank resulting in spills - Personnel overcome by potentially hazardous vapors	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure, Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. The DOI Declaration of Inspection will be completed prior to operations. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4 -gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be worn and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
9. Transfer of oil into transporter	- Personnel contacted by crude oil spray or environmental release - Overfilling transportation vessel resulting in spills - Personnel overcome by potentially hazardous vapors - Fall hazards present if personnel are working above 6 feet	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure. Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4 -gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are

SAFETY MANAGEMENT SYstem	$\left(\frac{\text { SAFETY }}{\text { SAF }} /\right.$	
	Job Hazard Analysis	Revision: 08/2015

(1) Job Steps	2) Potential Hazards	© Preventive Measures / Special PPE
		detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be worn and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
10. Prolonged exposure to elements (Heat Stress)	- Inadequate hydration - Extended work periods without rest resulting in heat stress	- Personnel will be encouraged to hydrate frequently. Water to sports drink ratio will be 3:1 (1 sports drink to 3 waters consumed). - Work to rest schedules will be determined based on the ambient temperature, acclimatization of personnel and work being performed. Heat stress potential and signs/symptoms will be discussed at all safety meetings, tailgate meetings and during breaks. Personnel will be encouraged to self-report any early symptoms of heat stress. All personnel will be advised that stop work authority applies to potential heat stress symptoms they may be experiencing, (or that they suspect with coworkers).
11. Break time	- Potential for ingestion of petroleum product or other contaminants. - Fire hazards from unrestricted smoking - Direct sun reduces recovery time for workers during breaks - Inadequate water	- Personnel will wash hands before smoking, eating, drinking or any other activity where contaminants might be ingested. This hazard will be stressed in break areas. - Only smoke in designated areas. - Ensure that break areas have adequate shade and cooling potential for personnel - Personnel are more likely to hydrate when cool water is available. Ensure an adequate supply and include sports drinks with electrolytes to be consumed sparingly.
12. Decontaminate Personnel	- Potential for secondary contamination by absorption, injection, or ingestion	- Follow decontamination plan for clothing removal and disposal when protective outerwear is required and becomes contaminated. - Only use safety scissors (never knives) to cut Tyuek from personnel. - Ensure that workers wash hands and face thoroughly.
NRC INCIDENT REPORTING POLICY	- First Aid - OSHA recordable - Iliness/Injury - Near Miss - Equipment/Vehicle Damage	- NRC employees and subcontractors are required to immediately report all incidents to their supervisor. - The immediate supervisor will immediately report the incident to the site safety professional, HSEQ Manager, and Project Manager. - As soon as possible the affected employee will complete the required form, if an injury then the first report of injury; if near miss, then a near miss / safety suggestion form will be completed. - The supervisor will complete a root cause analysis of all reported incidents and submit to the HSEQ manager within 8 hours of an incident. - Determination will be made regarding need for post-incident drug and alcohol testing based on NRC policy. - Contact HSEQ Manager for proper USCG reports, if needed and what report is needed.

REVIEW

	SAFETY MANAGEMENT SYSTEM	SAFETV
	Job Hazard Analysis	Revision: 08/2015

(1) Job Steps	2 Potential Hazards	(3) Preventivo Measures / Special PPE
		detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be worm and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
10. Prolonged exposure to elements (Heat Stress)	- Inadequate hydration - Extended work periods without rest resulting in heat stress	- Personnel will be encouraged to hydrate frequently. Water to sports drink ratio will be 3:1 (1 sports drink to 3 waters consumed). - Work to rest schedules will be determined based on the ambient temperature, acclimatization of personnel and work being performed. Heat stress potential and signs/symptoms will be discussed at all safety meetings, tailgate meetings and during breaks. Personnel will be encouraged to self-report any early symptoms of heat stress. All personnel will be advised that stop work authority applies to potential heat stress symptoms they may be experiencing, (or that they suspect with coworkers).
11. Break time	- Potential for ingestion of petroleum product or other contaminants. - Fire hazards from unrestricted smoking - Direct sun reduces recovery time for workers during breaks - Inadequate water	- Personnel will wash hands before smoking, eating, drinking or any other activity where contaminants might be ingested. This hazard will be stressed in break areas. - Only smoke in designated areas. - Ensure that break areas have adequate shade and cooling potential for personnel - Personnel are more likely to hydrate when cool water is available. Ensure an adequate supply and include sports drinks with electrolytes to be consumed sparingly.
12. Decontaminate Personnel	- Potential for secondary contamination by absorption, injection, or ingestion	- Follow decontamination plan for clothing removal and disposal when protective outerwear is required and becomes contaminated. - Only use safety scissors (never knives) to cut Tywek from personnel. - Ensure that workers wash hands and face thoroughly.
NRC INCIDENT REPORTING POLICY	- First Aid - OSHA recordable - Illiness/Injury - Near Miss - Equipment/Vehicle Damage	- NRC employees and subcontractors are required to immediately report all incidents to their supervisor. - The immediate supervisor will immediately report the incident to the site safety professional, HSEQ Manager, and Project Manager. - As soon as possible the affected employee will complete the required form, if an injury then the first report of injury; if near miss, then a near miss / safety suggestion form will be completed. - The supervisor will complete a root cause analysis of all reported incidents and submit to the HSEQ manager within 8 hours of an incident. - Determination will be made regarding need for post-incident drug and alcohol testing based on NRC policy. - Contact HSEQ Manager for proper USCG reports, if needed and what report is needed.

REVIEW

	SAFETY MANAGEMENT SYSTEM	SAFÊTY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

Site Safety officer_ foesue salgeren PLAN APPROVAL

Google Maps $\begin{aligned} & \text { Gis Dock to LADY OF THE SEA GENERAL } \\ & \text { HOSPITAL }\end{aligned}$ Drive 28.1 miles, 35 min

A.	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

EMERGENCY MEDICAL TREATMENT AND FIRST AID

TYPE CONTACT	FIRST AID
Eyes	- Flush each eye continuously for 15 minutes - Tilt head to side to ensure liquid runs onto floor not other eye - Refer to EMT for evaluation
Skin	- Remove contaminated clothing immediately - Wash skin continuously for 15 minutes - Refer to physician if redness, swelling, or pain persists after washing
Not Breathing	- Call 911 - Remove to fresh air immediately if respiratory distress develops - Begin CPR until EMT arrives
Ingestion	- Aspiration hazard - Do not induce vomiting - Do not give anything by mouth

ACCIDENT REPORTING

FIRST AID	Employees immediately report all accidents or incidents to the Site Project
INJURIES REQUIRING MEDICAL TREATMENT	Manager / Safety Officer
VEHICLE ACCIDENT	Site Project Supervisor will immediately notify the NRC Project Manager via cell
NEAR MISS	phone. If unable to reach the Project Manager, call the NRC Safety Manager.
	If you get a voice mail; call their cell phones
	NRC Safety Manager will provide employee disposition guidelines and
	coordinate an accident investigation either by himself or Project Supervisor
	NRC Project Manager will relay information to Project Site Superintendent
	Accident reporting forms are included in Attachment \boldsymbol{D}
	Determination will be made regarding need for post accident drug testing

EMERGENCY RESPONSE PLAN

ELEMENT	LOCATION, SPECIFICATION OR REASON FOR USE
NEAREST HOSPITAL	Our Lady of the Sea General Hospital, (985) 632-6401 200 W 134th PI, Cut Off, LA 70345
NEAREST PHONE	Port Fourchon Facility Phone

| SAFETY MANAGEMENT SYSTEM | SAFETY |
| :---: | :---: | :---: |
| Form 8.1.7 | Site Specific Safety Plan |
| Project Name:MC20 Recovered Crude Oil Transfer | Revision: 08/2019 |

SITE LAYOUT

Sketch the work area or attach a schematic drawing. Please include the following:

Evacuation Route	Control Entry Point	Exclusion Zone (red security tape)
Decontamination Point (red tape)	Support Zone (yellow caution tape)	Fire Extinguishers
Eyewash / Showers		

See Facility Map

	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

DECONTAMINATION AND DISPOSAL

DECONTAMINATION EQUIPMENT

Visqueen on Ground
Carpet on Ground
Wooden Pallets
Decon Pool / wash boots
Boot brushes
Decon Pool Rinse Boots
Respirator wash bucket
Respirator rinse bucket
Drying stands or platforms for respirators
after washingWipe rags to clean respirators

Rags for cleaning - wiping
Labeled Drums for disposal items Chairs to sit on for PPE removal
Plastic zip-lock bags for personal sample pumps
Water to wash face / hands
Decontamination Assistant
Barrier stands
Caution tape to designate decon area Shower

PERSONNEL DECONTAMINATION PLAN

```
Establish two stage contamination reduction zone with small decon area just inside of containment area Provide wet rags (not saturated) to personnel to wipe exterior of PPE prior to dry decon (stage 1 decon)
Place empty lined drums for contaminated PPE with liners removed to waste bin at end of each shift
Untape gloves and boots - discard tape
Sit on chair prior to removing boots or outer PPE
Remove boots and outer gloves (boots will be reused and leather outer gloves may be reuse if still in good condition)
Unzip suit / pull off hood
Roll down suit / inside out and place into labeled container
Remove respirator
Use wipes to clean
Store respirators in plastic bags after drying
Remove inner gloves
PPE and debris will be bagged, accounted for, and bulked into the applicable waste bin or container
Store respirators in individual plastic bags with employee names
```


WASTE MANAGEMENT PLAN

Contaminated disposable PPE \& debris from operation shall be placed in an approved container

	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8,1.7		Revision: 08/2019

MINIMUM SAFETY EQUIPMENT REQUIRED

\checkmark	Eyewash	\checkmark	Decon Pool / Supplies See itemization list under Decon	Tinted faceshield, leathers, gauntlets, hot-work cutting gear
\checkmark	First Aid Kit	\checkmark	Fire Extinguisher, Dry Chemical	
	Barricades / Traffic Cones / Delineators / Banner Tape			
	Harnesses		Lire Extinguisher, Water	\checkmark
Lanyards / rope		Confined space entry equipment		
\checkmark	PPE (Task specific)			

TRAINING / DOCUMENTATION REQUIREMENTS

\checkmark	HAZWOPER 40	\checkmark	Hazwoper Supervisor	\checkmark	Current 8 Hour Refresher
\checkmark	First Aid /CPR		Confined Space Supervisor	\checkmark	Current Medical Fitness For Duty
	NRC Confined Space Entrant		NRC Confined Space Rescue		
\checkmark	API Safe Rigging Practices	\checkmark	Documentation of compliance with Drug Free Work Place		
	Competent Fire Watch Designated Personnel		Qualified Pressure Washer Operator		

SAFETY MANAGEMENT SYSTEM	SAFETY	
Form 8.1 .7	Site Specific Safety Plan	
	Project Name: \quad MC20 Recovered Crude Oil Transfer	Revision: 08/2019

ITEM	HAZARD	PREVENTION
		they will be removed from work and follow the US Ecology / NRC return to work guidance issued by corporate. - The Symptoms in question are Fever (Above 100.4F, Dry Cough, and Shortness of breath) - Dockside personnel will not interact with personnel aboard the M/V during transfer operations. If an emergency were to arise where dockside personnel need to board the M / V they will be wearing proper PPE and will decontaminate anything touched while on board the vessel. - All trucks, handles, switches, controls, doors, etc. (frequently touched items) will be decontaminated frequently, at minimum prior to use and once the work task is complete. All personnel on site will have adequate supplies to decontaminate frequently touched surfaces such as disinfectant wipes, hand sanitizer, and a cleaner approved for use as a virucide. - All breaks will be taken individually, or employees will set themselves at least 6 feet away from one another to accomplish the social distancing demand due to the current pandemic.
NRC INCIDENT REPORTING POLICY	- First Aid - OSHA recordable - Illness/Injury - Near Miss - Equipment/Vehicle Damage	- NRC employees and subcontractors are required to immediately report all incidents to their supervisor. - The immediate supervisor will immediately report the incident to the site safety professional, HSEQ Manager, and Project Manager. - As soon as possible the affected employee will complete the required form, if an injury then the first report of injury; if near miss, then a near miss / safety suggestion form will be completed. - The supervisor will complete a root cause analysis of all reported incidents and submit to the HSEQ manager within 8 hours of an incident. - Determination will be made regarding need for post-incident drug and alcohol testing based on NRC policy. - Contact HSEQ Manager for proper USCG reports, if needed and what report is needed.
		-
		-
		-
		-
		-
		-
		-

	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

ITEM	HAZARD	PREVENTION
		personnel from the area during the transfer. There will be support personnel upwind with SAR capabilities on site for rescue purposes during this operation. - If H2S is detected above the IDLH (100 PPM) then stop work authority will be used, all personnel will evacuate the work area and move to an upwind, safe location until the levels are below 100 PPM.
Transfer of oil into transporter	Spill / spray crude oil on employee. Overfilling of frac tank Overcome by vapors	- All hose connections shall be secured with safety clips, then wrapped in sorbent pads and duct tape and rope to prevent spills or contamination of individuals. There will be no hose connections over water and all connections will also be in secondary containment. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC of the dock facility will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of all sorts of hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4 -gas meter with PID on site during transfer to ensure vapors aren't present. If vapors become an issue, all work will stop and PPE will be upgraded according to the chart found on page 5 of this document.
Incident Reporting	First Aid OSHA Recordable Medical Only Near Miss	- Employees immediately report all incidents to their immediate supervisor. - The immediate supervisor will immediately report the incident to the site safety professional, HSEQ Manager, and Project Manager. - As soon as possible the affected employee will complete the required form, if an injury then the first report of injury; if near miss, then a near miss / safety suggestion form will be completed. - The supervisor will complete a root cause analysis of all reported incidents and submit to the HSEQ manager within 8 hours of an incident. - Determination will be made regarding need for post-incident drug and alcohol testing based on NRC policy. - Contact HSEQ Manager for proper USCG reports, if needed and what report is needed.
Prolonged exposure to elements	Dehydration Hypothermia Hyperthermia	- If Tyvek is not required, long sleeve shirts should be worn to cover skin. - Rain suits should be worn in lieu of chemical protective coveralls during inclement weather - Drink plenty of fluids. - Appropriate clothing should be worn based on weather conditions,
Break time	Ingestion Fire	- Thoroughly wash hands before eating, drinking, smoking, or applying sun screen - Do not smoke near petroleum products (ONLY IN DESIGNATED AREA)
Decontaminate Personnel	Absorption Contamination	- Follow decontamination plan for clothing removal / disposal. - Do not use knives to cut PPE / use safety scissors - Wash hands and face thoroughly.
COVID 19 Protocol	Personnel infected with COVID-19 could spread it to others in the work area.	- Employees will follow all CDC, Local, State, and Federal guidance regarding Social Distancing. All personnel must remain at least 6 ' from one another on the worksite at all times. Only personnel essential to the operation will be allowed in the work area. - If any employee is displaying symptoms related to COVID19

	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

ACTIVITY HAZARD ANALYSIS / SUMMARY

ITEM	HAZARD	PREVENTION
Behavioral Based Safety	Hazard Identification Stop Work Authority Near Miss	- Immediate supervisor will remind their crews of their Authority and Responsibility to Stop work and contact their supervisor if they discover a hazard - Safety officer to coordinate with work crew safety leads - Daily HASP / Tailgate meetings will be conducted with the crew. - Report all near misses, at risk conditions on the job site, or at-risk actions by crew member. Discuss all reported near misses during the post job briefing and during Daily HASP / Tailgate meetings.
Mooring M/V	Struck by Pinched by Fall into water	- When tossing the mooring lines to the shore allow the lines to fall on the ground and pick them up. Do not attempt to catch mooring lines from the M / V. - When mooring the vessel, keep hands, fingers, arms, and all other body parts from between the mooring line and the bits on the dock. - Never perform this task alone and all personnel within 5^{\prime} of the docks edge are required to wear a USCG approved PFD.
Connecting Hoses	Caught / pinched by Back / muscle strain Slip / Trip / Fall	- Identify, communicate, and avoid all pinch / crush points including, but not limited to - cam lock connections, trucks backing / parking, other mobile equipment on the dock. - Transfer hoses can be heavy and when handling these hoses employees shall use proper ergonomic practices including keeping your back as straight as possible as well as lifting with your knees and not your back. - Observe good housekeeping and maintain situational awareness when walking in the dock area. Try to run hoses in an area that is out of the normal walking path and go around if possible.
Energizing pneumatic equipment	Hose whipping Air Leak Noise levels above 85 decibels	- Ensure all connections have whip checks and safety clips in place prior to energizing air lines. - If hissing is hear there is a leak in the line and the compressor should be de-energized and the leaking hoses / connections should be replaced prior to continuing operation. - Hearing protection required for pneumatic equipment.
Transfer of recovered crude oil	Spill / spray crude oil on employee. Overfilling of frac tank Overcome by vapors Hydrogen Sulfide (H2S) Detected during transfer.	- All hose connections shall be secured with safety clips, then wrapped in sorbent pads and duct tape and rope to prevent spills or contamination of individuals. There will be no hose connections over water and all connections will also be in secondary containment. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC of the dock facility will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of all sorts of hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4 -gas meter with PID on site during transfer to ensure vapors aren't present. If vapors become an issue, all work will stop and PPE will be upgraded according to the chart found on page 5 of this document. - All personnel involved in the transfer process will be wearing a personal H2S Detector worn in their breathing zone. - If H2S is detected above 5 PPM, the operations will stop, and all essential personnel will don their Supplied Air Respiratory Protection (SAR) and evacuate all non-essential

	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

AIR MONITORING / ACTION LEVELS

Chemical Hazard	Instrument	Action Level	Action
Oxygen $\left(\mathrm{O}_{2}\right)$	4-gas	<19.5\% or >23.5\%	- Stop work, determine source of hazard and apply engineering control (ventilation) until reading can be brought to $21 \%+/-1 \%$.
Carbon Monoxide (CO)	4-gas	25 ppm	- Stop work, determine source of hazard and apply engineering controls. Upgrade PPE as necessary.
Lower Explosion Limit (LEL)	4-gas	>10\%	- Stop work, determine source of hazard and apply engineering control (ventilation) until reading can be brought below 10%.
Hydrogen Sulfide (H2S)	4-gas	$\begin{gathered} 10 \mathrm{ppm} \\ >10 \mathrm{ppm} \end{gathered}$	- OSHA PEL - SCBA / Supplied Air Respiratory Protection
PID/VOC	PID	$\begin{gathered} 10-750 \mathrm{ppm} \\ >750 \end{gathered}$	- Don level C PPE APR w/OV cartridge (Check Benzene Levels, if Benzene levels are below 0.5 Respiratory protection may be reduced - SCBA / Supplied Air Respiratory Protection
Benzene	Colorimetric Tube	$\begin{gathered} \quad<0.5 \mathrm{PPM} \\ 0.5-25 \mathrm{PPM} \\ >25 \mathrm{PPM} \end{gathered}$	- No Respiratory requirement - Full Face APR with OV Cartridges - SCBA / Supplied Air Respiratory Protection

	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

PERSONAL PROTECTIVE EQUIPMENT

TASK	Level	MASK / CARTRIDGE / AIR	ADDITIONAL PPE
Mooring Vessel	D	N/A	Level D PPE with the addition of an approved PFD when working within 5^{\prime} of the docks edge
Connecting hoses	D	N/A	Level D PPE with the addition of an approved PFD when working within 5^{\prime} of the docks edge
Completing inspection	D	N/A	Level D PPE with the addition of an approved PFD when working within 5^{\prime} of the docks edge
Transfer operations	D	Level C or Level B may be needed based on air monitoring results.	Level D PPE (unless readings indicate a need to upgrade PPE to level C respiratory protection) with the addition of an approved PFD when working within 5^{\prime} of docks edge. If H2S is detected above 5 ppm Level B PPE (supplied air respirators) will be used. Operations will be suspended if H 2 S levels reach 100 ppm .

RESPIRATORY PROTECTION PLAN

The NRC SMS Procedure 13.2 for Respiratory Protection is provided in Attachment C

N/is	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

CHEMICAL INFORMATION

CHEMICAL / CAS	$\begin{aligned} & \text { CHEMICAL } \\ & \text { PROPERTIES } \end{aligned}$	EXPOSURE LIMITS Action Levels	ROUTES OF ENTRY	SYMPTOMS
Crude Oil	VP (mmHg): 2.6-6.2lbs @ 100F VD (Air=1): >1 BP: -54 to 1100 F SG: 0.8939 PV: 1-50 FP: <24 F Estimated LEL: 1.1 UEL: 7.3 Appearance; thick light yellow to dark black	Oil Mist, If Generated ACGIH TWA: $5 \mathrm{mg} / \mathrm{m} 3$ STEL: $10 \mathrm{mg} / \mathrm{m} 3$ OSHA TWA: $5 \mathrm{mg} / \mathrm{m} 3$ NIOSH IDLH: $2500 \mathrm{mg} / \mathrm{m} 3$	X Inhalation X Ingestion X Contact	May include eye, nose and throat irritation, digestive tract, nausea, vomiting, diarrhea, headache, drowsiness, dizziness, loss of coordination, disorientation and fatigue
Hydrogen Sulfide Benzene / 71-43-2	Strong rotten egg odor at low levels, rapidly deadens the sense of smell at higher concentrations. Highly flammable - LEL is 4.3%	10 PPM - OSHA PEL Above 10 PPM - Level B PPE required in work area. $\mathrm{IDLH}=100 \mathrm{PPM}$	X Inhalation Ingestion Absorption Contact 	Headache, Nausea, irritation to the eyes, nose, or throat. Death if exposed to high concentrations of Hydrogen Sulfide.
Benzene / 71-43-2	$\begin{aligned} & \text { S.G. }=0.88 \\ & \text { FP }=12 \mathrm{~F} \\ & \text { LEL: } 1.2 \% \\ & \text { UEL }=7.8 \% \end{aligned}$	ACGIH TWA: 0.5 ppm OSHA TWA: 1 ppm IDLH: 500ppm	X Inhalation X Ingestion X Absorption X Contact	Irritation to the eyes, skin, nose and respiratory system. Dizziness, headache, nausea, staggered gait; bone marrow depressive.

	SAFETY MANAGEMENT SYSTEM	SAFETY
Form 8.1.7	Site Specific Safety Plan Project Name: MC20 Recovered Crude Oil Transfer	Revision: 08/2019

EQUIPMENT

- Air Compressor (One aboard the M / V \qquad BB - One on Port Fourchon Facility Properties)
- 4 -inch pneumatic diaphragm pumps
- Petroleum Duty transfer hoses rated and inspected accordingly
- Safety Clips for Cam-lock connections and Chicago fittings
- Containment pans for diaphragm pumps and each hose connection (on the deck of the M / V as well as the Port Fourchon Facility Dock)
- Sorbent pads / Polly to wrap around each hose connection as spill prevention
- Whip Checks for each air line connection coming from the air compressor
- Intrinsically safe handheld VHF radios (Means of Communication between PIC of vessel and PIC of dock)
- Supplied Air Breathing System

ATTACHMENTS

Altachment	InIIE	Atachmand	
A	Safety Data Sheets	F	Diagram of dock layout
B	SMS 8.1.5 Daily Safety Meeting form - Maritime		
C	SMS 13.2 Respiratory Protection		
D	Incident / Near Miss / RCA		
E	DOI		

NRC PROJECT PERSONNEL AND EMERGENCY CONTACTS	
Shore side NRC Project Manager	Jesse Bridges (985) 502-7190
Director of Marine Ops	David Kendall (281) 914-6577
Director of Operations	Ray Mc Coy (631) 236-2512
Yard Manager	Darryl Prout (985) 396-4518
H\&S Program Manager	Peter Brause, CSP (310) 387-2639
VP Health \& Safety	Ken Koppler, CIH, CSP (971) 285-0450
Hospital / Medical Intervention	Lady of the Sea Hospital: Galliano, LA (985) 632-6401

Date: $12-03-22$ Start Time: $0600 \quad$ Job Number: 19 -0192

The site is the Port Fourchon Facility: 554 Dudley Bernard Rd. Port Fourchon, LA. 70357 (985) 396-4518
NRC will facilitate removing recovered crude oil from the well located at MC2O project. The M/V \qquad has been collecting crude oil from the location and storing it on Marine Portable Tanks (MPTs) located on her deck. The vessel will be moored to the dock at the above location and transfer the recovered crude from the MPTs on her deck to double walled frac tanks on the dockside.

Once the fac tanks on the Port Fourchon docks are ready for transfer the crude will then be transferred into bulk transporter trailers to be sent to its final destination.

SCOPE OF WORK

The m/v $B 3$ will send a 100^{\prime} section of 3 -inch petroleum duty hose to the dock where it will be connected to the hoses leading to a properly rated and tested manifold. The manifold has one inlet and three outlets. Each outlet will be fitted with a 3 -inch transfer hose and affixed to the frac tanks. Once the connections are secured and the declaration of inspection (DOI) is complete, the vessel will transfer the crude oil in her tanks using a 4 -inch pneumatic diaphragm pump. As the frac tanks near capacity the dockside operator will open the next manifold valve and close the active one. This process will continue until all three frac tanks are at capacity. Once the transfer is complete a 1 -inch airline with the proper fitting will be given to the M / V 's crew to send compressed air up the hose to "blow down" any residual product left in the hoses to ensure no product is spilled when the hoses are disconnected.

After the crude oil sits in the frac tank at the Port Fourchon Dock for 12 to 24 hours the crude oil will be pumped using a 3 -inch pneumatic diaphragm pump to transport trailers to be sent to final destination.

SAFETY MANAGEMENT SYSTEM	SAFETTY Job Hazard Analysis	Revision:08/2015

(1) Job Steps	(2) Potential Hazards	3) Preventive Measures / Special PPE
		detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be worn and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
10. Prolonged exposure to elements (Heat Stress)	- Inadequate hydration - Extended work periods without rest resulting in heat stress	- Personnel will be encouraged to hydrate frequently. Water to sports drink ratio will be 3:1 (1 sports drink to 3 waters consumed). - Work to rest schedules will be determined based on the ambient temperature, acclimatization of personnel and work being performed. Heat stress potential and signs/symptoms will be discussed at all safety meetings, tailgate meetings and during breaks. Personnel will be encouraged to self-report any early symptoms of heat stress. All personnel will be advised that stop work authority applies to potential heat stress symptoms they may be experiencing, (or that they suspect with coworkers).
11. Break time	- Potential for ingestion of petroleum product or other contaminants. - Fire hazards from unrestricted smoking - Direct sun reduces recovery time for workers during breaks - Inadequate water	- Personnel will wash hands before smoking, eating, drinking or any other activity where contaminants might be ingested. This hazard will be stressed in break areas. - Only smoke in designated areas. - Ensure that break areas have adequate shade and cooling potential for personnel - Personnel are more likely to hydrate when cool water is available. Ensure an adequate supply and include sports drinks with electrolytes to be consumed sparingly.
12. Decontaminate Personnel	- Potential for secondary contamination by absorption, injection, or ingestion	- Follow decontamination plan for clothing removal and disposal when protective outerwear is required and becomes contaminated. - Only use safety scissors (never knives) to cut Tyvek from personnel. - Ensure that workers wash hands and face thoroughly.
NRC INCIDENT REPORTING POLICY	- First Aid - OSHA recordable - Illness/Injury - Near Miss - Equipment/Vehicle Damage	- NRC employees and subcontractors are required to immediately report all incidents to their supervisor. - The immediate supervisor will immediately report the incident to the site safety professional, HSEQ Manager, and Project Manager. - As soon as possible the affected employee will complete the required form, if an injury then the first report of injury; if near miss, then a near miss / safety suggestion form will be completed. - The supervisor will complete a root cause analysis of all reported incidents and submit to the HSEQ manager within 8 hours of an incident. - Determination will be made regarding need for post-incident drug and alcohol testing based on NRC policy. - Contact HSEQ Manager for proper USCG reports, if needed and what report is needed.

REVIEW

	SAFETY MANAGEMENT SYSTEM	SAFETY
	Job Hazard Analysis	Revision: 08/2015
		$10 / 3 / 2 x$
		12-3-22

TASK DESCRIPTION: MC 20 Recovered Crude Oil / Vessel to Shore Transfer
$12-03-22$
SUMMARY OF POTENTIAL HAZARDS (Check applicable)

JOB HAZARD ANALYSIS

	SAFETY MANAGEMENT SYSTEM	SAFETY
	Job Hazard Analysis	Revision: 08/20

(1) Job Steps	(2) Potential Hazards	(3) Preventive Measures / Special PPE
		awareness when walking in the dock area. Try to run hoses in an area that is out of the normal walking path and go around if possible
6. Working in potentially hazardous atmospheres	- Personnel exposed to hazards related to hazardous atmospheres. - Ignition sources create potential for explosive conditions - Personnel not equipped to suppress incipient fire	- Calibrated multi-gas meters/detectors will be used to confirm that LEL's, CO and other gases are within safe range for pumping and transfer operations. Operations will transfer operations will stop immediately if LEL's or Carbon Monoxide levels become elevated - A protective distance of 100^{\prime} outside shoreside transfer will be identified, and marked with caution tape and warning signs, to prohibit smoking, sparks and any potential source of ignition within the transfer area perimeter. The MN will suspend all similar activities for the duration of transfer operations. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
7. Energizing pneumatic equipment	- Personnel injured when struck by hoses or pressure during hose connection or fitting failure. - Air leaks or blowout causing pressure related injuries. - Hearing loss/injury due to noise levels above 85 decibels	- All pressurized hoses will have whip checks and safety clips installed prior to energizing. All pneumatic hoses will be inspected prior to use. - Pumping operations will be stopped immediately if leaks are detected during operations. Defective hoses will be replaced with new hoses/whips. - Hearing protection will be worn in all areas where highnoise machinery and equipment is being operated.
8. Transfer of recovered crude oil	- Personnel contacted by crude oil spray or environmental release. - Overfilling tank resulting in spills - Personnel overcome by potentially hazardous vapors	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure. Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. The DOI Declaration of Inspection will be completed prior to operations. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4-gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are detected. PPE will be upgraded according to the concentration of hazards detected. - If personnel will work at heights above 6^{\prime} : fall protection will be worn and a rescue plan will be in place. - Fire extinguishers will be placed at the transfer manifolds, compressors, vessel and any other areas of potential ignition.
9. Transfer of oil into transporter	- Personnel contacted by crude oil spray or environmental release - Overfilling transportation vessel resulting in spills - Personnel overcome by potentially hazardous vapors - Fall hazards present if personnel are working above 6 feet	- All transfer hoses used will be inspected, certified and tested prior to use. They will be secured with safety clips and wrapped with absorbent pads and duct tape. Polypropylene line will be used as an added retention measure. Personnel will wear Level D PPE and increase protection as appropriate. Spill control kits/supplies will be available on site. - Prior to transfer the amount of product that can be accepted will be calculated and the PIC will ensure that there is ample room to handle the transferred product. - Crude oil is a mixture of various hydrocarbons. Among them can be benzene, hydrogen sulfide, and other chemicals. There will be a properly calibrated and bump tested 4-gas meter on site during transfer to ensure vapors aren't present. All work will stop if hazardous gasses are

DECLARATION OF INSPECTION
LOCATION \& NAME OF FACILITY

An oil transfer operation may not commence to or from a vessel unless the following requirements are met and agreed upon by the respective transferring and receiving persons in charge.
Persons in charge indicate by a check $(\sqrt{ })$, in the appropriate spaces, that the specific requirement has been met.

The following items are to be filled out by Vessel personnel only.

...1. Warnitg signs and read warning signals (35.35-30).
..2. Repair work authorization (35.35-30).
.3. Boiler and galley fires safety (35.35-30).
.4. Fires or open flames (35.35-30).
.5. Safe smoking space (35.35-30).

I certify that I have read, understand and agree with the foregoing as marked and agree to begin/continue the transfer operation.

The operator of each facility and the operator of each vessel shall retain a signed copy for at least a month.

\checkmark	TOPIC		
§ Inspect discharge containment equipment for oil \& hazardous liquids - 33CFR 154.545			
Verify adequate amount of equipment and/or absorbent material for initial response			
Inspect condition of response equipment stored on facility (if applicable).			
Verify availability of at least 200 feet of containment boom onsite within 1 hour. ${ }^{\text {a }}$ (${ }^{\text {a }}$			
§ Means of Communication - 33 CFR 154.560			
Verify continuous two-way voice communication between vessel and facility PICs.			
Communications must meet the following requirements...			
Portable Radio:			
IF Flammable or Combustible Liquids			
1. Marked or documented as intrinsically safe.			
2. Certified as intrinsically safe by national testing labor certification organization.			
Voice			
1. Be audible.			
	Test communications. SAT \square UNSAT \square	n	OB
§ Inspect lighting systems - 33 CFR 154.570			
	Verify portable lighting for operations between sunrise and sunset (if applicable).		
	At transfer operations work areas for facility and vessel		D
	At transfer connection points for facility and vessel	b	a
	Verify sufficient number or fire extinguishers.	b	
	Verify protective equipment is ready to operate.		
	Verify warning signs are adequate.	10	
§ VESSEL ONLY - 155.730 Compliance with VESSEL TRANSFER PROCEDURES §			
PIC for vessel/operator is required by $\$ 155.720$ to have current transfer procedures			
Require vessel personnel to use the transfer procedures for each transfer operation			
Available for inspection by the COTP or OCMI whenever the vessel is in operation			
Legibly printed language(s) understood by personnel engaged in transfer operation			
Permanently posted or available and used by members of crew engaged in transfer operation			
Appropriate tank level monitoring (visual, gauging, indicators, etc.)			
Arrangements to monitor draft marks during transfer			
Transfer Piping Line diagram, location of each valve, pump, control device, vent, and overflow			
Shutoff valve location or isolation device separating bilge or ballast from the transfer system			
Adequate containment on the vessel at loading or discharge connection			
The number of persons required to be on duty during transfer operations;			
Procedures for emptying discharge containment system required by $\$ 8155.310$ and 155.320			
Procedures for tending the vessel's moorings during the transfer of oil or hazardous material			
Procedures for emergency shutdown/communications required by $\$ \$ 155.780$ and 155.785			
Procedures for topping off tanks			
Procedures ensuring all valves used during transfer are closed upon completion of transfer			
I do certify that I have personally inspected this facility or vessel with reference to the requirements aforementioned and that Thave indicated that the regulations have been complied with if applicable.			
		Codo	
		DATE	
		$\frac{12-03-22}{\text { DATE }^{060 j}} \frac{06 \text { TIME }}{}$	
TRANSFER COMPLETED: \quad AMOUNT (GALLONS)			
		DATE	TIME

DECLARATION OF INSPECTION PRIOR TOO BULK CARGO TRANSFER

Date: $/ 2-3-2.2$ Location:

Facility/Vehicle Number:

End Time Vessel Name:

Average most probable:
Maximum most probable:
Worst case discharge:
The following list refers to requirements set forth in detail in 33 CFR 156.150 and 46 CFR 35.35-30.
$>$ The spaces on the left are to be reviewed by ALL PIC's involved in the transfer and checked in agreement.
$>$ The right hand columns are to be initialed by the appropriate PIC and/or noted as not applicable with (N/A).
$>$ Items on the list are provided to indicate that the detailed requirements have been met

